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A few slides of summary...
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Variational data assimilation relies on some essential assumptions:

e Gaussian and unbiased model background and observation errors,
e Quasi-linearity of all operators involved (H, M).

Given some background fields and a very large set of asynchronous
observations available within a certain time window (6 or 12h-long), 4D-Var

searches the statistically optimal initial model state X, that minimizes the
cost function:

J(Xo) = Jp(Xo) + Jo(HM(Xy))

The calculation of V,,J requires the coding of tangent-linear and adjoint
versions of the observation operator H and of the full nonlinear forecast
model M (including physical parameterizations).

The tangent-linear and adjoint forecast models, M and MT, are usually

based on a simplified version of the full nonlinear model, M, to reduce
computational cost in the iterative minimization and to avoid nonlinearities.




The aim of data assimilation is to produce a statistically optimal model
state (the analysis) which can be used to initialize a forecast model.

In variational DA, this is achieved by minimizing a cost function, J, that
measures the distance to the model background and observations,
weighted by their respective error statistics.

In 3D-Var:

3= =) B -3 (H G0 -y JRTH ) - v,

Parameterizations are needed during the minimization to convert the model
control variables (T,q,u,v,P,) into observed equivalents (e.g. reflectivities,
radiances,..) ("observation operator” H).

Fundamental assumptions:
- Background and observation errors are Gaussian and unbiased.

- Observation operator H is not too non-linear.



e The aim of a data assimilation system is to produce a statistically optimal
model state (the analysis) that can be used to initialize a forecast model.

e In variational DA this is achieved by minimizing iteratively a cost function

(J) that measures the distance to the model background and observations,
weighted by their respective error statistics (Gaussian and unbiased).

e Parameterizations are needed during the minimization to:
- convert the model variables (T,q,u,v,P,) into observed equivalents

(e.g. reflectivities, radiances,...) (observation operator H),
- evolve the model state from analysis time to observation time (4D-Var).

e The tangent-linear and adjoint versions of these usually simplified
parameterizations must be coded, tested, and some regularization is
usually needed to eliminate discontinuities/non-linearities.

e The adjoint version of the parameterizations is needed fo compute the
gradient of the cost function with respect to the initial model state, X:

V. J=B7(x=x,)+M[t;,t,]H'V I with V. J =R (H(X)-Y,)



A few examples and exercises...




A simple analysis problem

Fxercise

e 6-hour forecast of 2m temperature produced by the model:
xp, with a standard deviation of forecast error oy

e observation of 2m temperature:
Yo with a standard deviation of observation error o,

e The best estimate of the 2m temperature (analysis) minimizes the departure from the model
first-guess and from the observation according to their relative accuracies:

. 2 - 2
T(x) = %(ﬁ) 4 l(u)
op 2 Oo

Since the analysis x, minimizes the cost function, then

a—x(xa) =0

Analysis state can be written as:

Xqg = Xp + a(yo - Xb)

3

ECMWF, Reading



A simple analysis problem

Exercise

e Problem:

— Find the coefficient o.

— Show that the variance of the analysis error is:

(Note: o = (x — x¢)?, where x; is the unknown true state).




A simple analysis problem
solution
¢ Since the analysis x, minimizes the cost function, then
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® Analysis error:

starting from equation (*) one gets

Xa

._|._

(Xb - Xt)(Yo - Xt)

A simple analysis problem
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Since background and observation errors are assumed to be uncorrelated:
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1D-Var assimilation of physical fluxes

Example

observation operator = physical parametrization

— example: thermal radiation at the surface (Brunt, 1934)
Rp = oT*(a + by/e)
where T is the screen level temperature and e is the water vapour pressure

model temperature and humidity (7%, ep) can be modified to better match an observation of
thermal radiation Ryp,,

the optimal values of T' and e minimize the following cost function:

2 2 2
1/T—-T, 1fe—ce 1 {R;, — R
J(T,e)=—( b) +—( b) +—(u)
2 O-Tb 2 a-eb 2 O-O

gradient of the cost function:

0T T — Ty OR; ( R — R,
8_T B O’Tg i oT ( crg )
0J e —ep ORy, { Rr, — R,
E N a‘eg + Oe ( crg )

3
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1D-Var assimilation of physical fluxes
Example

e tangent-linear operator:

de

OR R oT
SRp, = (57 aeL)'( )

e adjoint of the tangent-linear operator:

ORj,
(2o 2oy _ (2T ). 9Jo

de

. OR 3 OR 4
with == = 40T (a + by/e) and L = 62"5;

ECMWEF, Reading




EXERCISE 2

- write tangent linear (TL) and adjoint (AD) code of the following non-linear (NL) code
(FORTRAN 90)

SUBROUTINE Longwave_Radiation (EA, TA, RL)

Longwave radiation at the surface (RL in Watts/m2)
Empirical expression from Brunt (1934) depending upon

TA = air temperature (K)

EA = water vapour pressure (hPa)

Non-linear routine

IMPLICIT NONE

REAL
REAL
REAL
REAL
REAL

ZEMIS
RL

INTENT(IN) :: EA, TA
INTENT (OUT) :: RL
PARAMETER :: A=0.75, B=0.003
PARAMETER :: SIGMA=b5.67E-8

: ZEMIS
A+B*S(RT (EA)
ZEMIS*SIGMA*TA**4

END SUBROUTINE Longwave_Radiation

0

ECMWEF, Reading



EXERCISE 2 - solution
® tangent linear code
SUBROUTINE Longwave Radiation_TL (EAB, TAS, RLG, EA, TA, RL)
! Longwave radiation at the surface (RL in Watts/m2)
! Empirical expression from Brunt (1934) depending upon
! TA = air temperature (K)

! EA = water vapour pressure (hPa)

! Tangent-linear routine

IMPLICIT NONE

REAL , INTENT{IN} :: EAB, TA5 I Trajectory
REAL , INTENT{QUT) :: RLE ! Trajectory
REAL , INTENT(IN) :: EA, TA ! Pertuzrbation
REAL , INTENT(QUT) :: RL ! Perturbaticn
REAL , PARAMETER 1 A=0.75, B=(.003

REAL , PARAMETER 11 SIGMA=5.B7E-8

REAL i1 ZEMISh, ZEMIS

ZEMISL = A+B*3QRT(EAR)

ZEMIS = B/(2.=5QRT(EAE))*EA

RL5 = ZEMISB*3IGMA*TAE**4

RL = ZEMIS *SIGMA=TAB**4d + 4 +«ZEMISSxSTOMA*TAB**3%TA

END SUBROUTINE Longwave Radiation TL

ECMWEF, Reading



o adjoint code
SUBROUTINE Longwave_Radiation_AD (EAGE, TAB, RLB, EA, TA, RL)

EXERCISE 2 - solution

! Longwave radiation at the surface (RL in Watts/m2)
| Empirical expression from Brunt (1934) depending upon

! TA
! EA

[

1

air temperature (K)

water vapour pressure (hPa)

I Adjoint rcutine

IMPLICIT NOKE

REAL
REAL
REAL
REAL
REAL
REAL
REAL

3

INTENT (TN}
INTENT{OUT)
INTENT{IN)
INTENT{OUT)
PARAMETER
PARAMETER

11 EAG, TAB

i RLS

1: EA, TA

:: RL

1 A=0.75, B=0.003

SIGMA=5.67E-8
ZEMISE, ZEMIS

! Trajectory computations

ZEMISH

RL5

il

A+B+SQRT (EAB)
ZEMIS5*SIGMA*TAG 4

! Initialization of local variables

1
1
1
!

Trajectory
Trajectory
Perturbation
Perturbation

BECMWE, Reading



ZEMIS = 0.
! Adjoint computation

TA = TA + 4 *ZEMISE+3IGMA*TAE**3%RL
ZEMIS = ZEMIS + SIGMA*TAS%%4*RL

RL = 0.

EA = EA + B/(2.*SQRT(FEAB))*ZEMIS
ZEMIS = 0.

END SUBROUTINE Longwave_Radiation_AD

ECMWEF, Reading




A simple 4D-Var analysis problem

Exercise 4
Observations y; and y2 at time £; and to
Model first guess x; and x2 at time t; and t2 Xo X:
L
Time evolution from the initial time tg: :
t
1

X1 = M1 (Xo) and Xo = MQ(Xl)

Cost function:

Problem:
Estimate the gradient of J with respect to the initial state xg.

3

ECMWF, Reading



* Solution

o At time to:

e At time t1:

o At time #g:

e Finally:

ECMWEF, Reading




