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A few slides of summary…
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 Variational data assimilation relies on some essential assumptions:

 Gaussian and unbiased model background and observation errors,

 Quasi-linearity of all operators involved (H, M).

 Given some background fields and a very large set of asynchronous
observations available within a certain time window (6 or 12h-long), 4D-Var
searches the statistically optimal initial model state x0 that minimizes the
cost function:

J(x0) = Jb(x0) + Jo(HM(x0))

 The calculation of x0J requires the coding of tangent-linear and adjoint
versions of the observation operator H and of the full nonlinear forecast
model M (including physical parameterizations).

 The tangent-linear and adjoint forecast models, M and MT, are usually
based on a simplified version of the full nonlinear model, M, to reduce
computational cost in the iterative minimization and to avoid nonlinearities.

Summary



 The aim of data assimilation is to produce a statistically optimal model
state (the analysis) which can be used to initialize a forecast model.

Summary

 Fundamental assumptions:

- Background and observation errors are Gaussian and unbiased.

- Observation operator H is not too non-linear.

 In variational DA, this is achieved by minimizing a cost function, J, that
measures the distance to the model background and observations,
weighted by their respective error statistics.

In 3D-Var:
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 Parameterizations are needed during the minimization to convert the model
control variables (T,q,u,v,Ps) into observed equivalents (e.g. reflectivities,
radiances,…) (“observation operator” H).



 The aim of a data assimilation system is to produce a statistically optimal
model state (the analysis) that can be used to initialize a forecast model.

Summary

 The tangent-linear and adjoint versions of these usually simplified
parameterizations must be coded, tested, and some regularization is
usually needed to eliminate discontinuities/non-linearities.

 In variational DA this is achieved by minimizing iteratively a cost function
(J) that measures the distance to the model background and observations,
weighted by their respective error statistics (Gaussian and unbiased).

 Parameterizations are needed during the minimization to:

- convert the model variables (T,q,u,v,Ps) into observed equivalents

(e.g. reflectivities, radiances,…) (observation operator H),

- evolve the model state from analysis time to observation time (4D-Var).

 The adjoint version of the parameterizations is needed to compute the
gradient of the cost function with respect to the initial model state, x:
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A few examples and exercises…





2



a

















t1 t2

x0

time

x1

x2

y1

y2




