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Using stochastic physics to represent model error

® Why represent model error in an ensemble forecast?
® What are the sources of model error?
® How do we represent model error?

e 2 stochastic physics schemes in the IFS

® Impact of stochastic physics schemes in the IFS:

e Medium-range ensemble (ENS)

e Seasonal forecast (S4)
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Ensemble reliability

® In a reliable ensemble, ensemble spread is a predictor of ensemble error
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i.e. averaged over many ensemble forecasts,

e(x)~o(x)

For a thorough discussion of this relationship:

Martin Leutbecher’s lectures (22"9/2314 April)

Slide 3 © ECMWF _wECMWF

sarah-jane.lock@ecmwf.int TC Predictability: 20-29 April 2015




Ensemble reliability

® In an under-dispersive ensemble,
e(x) > a(x)

K ~q Ensemble member
Y ® Ensemble mean
‘(\a(;’t) ® Observation
e(f) .’

and ensemble spread does not provide a good estimate of error.

What happens when the ensemble includes no representation of model error?
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What happens with no accounting for model error?
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Model error: where does it come from?

® Processes represented in the model:
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Model error: where does it come from?

® Any other sources: processes not captured by the underlying model?

® Atmosphere exhibits upscale propagation of kinetic energy (KE)
e at ALL scales: no concept of “resolved” and “unresolved” scales

e How can the model represent upscale KE transfer from unresolved to
resolved scales?
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Model error: how to simulate it?

® What do the model errors look like?

® What is the relative size of model error from different sources?
® How can we represent model errors?

® Multi-model ensembles [Tim Stockdale, 28t April]
® Multi-physics ensembles
® Perturbed parameter ensembles

® “Stochastic parametrisations”
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Stochastic physics schemes in IFS

® |FS ensemble forecasts (ENS and S4) include 2 model uncertainty schemes:
e Stochastically perturbed physics tendencies (SPPT) scheme

e Stochastic kinetic energy backscatter (SKEB) scheme

® SPPT scheme: simulates uncertainty due to sub-grid parametrisations

® SKEB scheme: parametrises a missing and uncertain process
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SPPT scheme

® |nitially implemented in IFS, 1998 (Buizza et al., 1999); revised in 2009:
® Simulates model uncertainty due to physical parameterisations by

e taking the net parameterized physics tendency:
X =Xy, Xy, X7, Xg |

coming from [ radiation 1 schemes
gravity wave drag
1 vertical mixing

T

convection

cloud physics

e and perturbing with multiplicative noise r € [—1, +1] as:
X =0+ ur)X

where u € [0,1] tapers the perturbations to zero near the surface & in the

stratosphere.
Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memao.)
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SPPT pattern

® 2D random pattern in spectral space:

— First-order auto-regressive [AR(1)] process for evolving spectral coefficients 7
F(t + At) = ¢7(t) + pn(t)

where ¢ = exp(—At /1) controls the correlation over timestep At;

and spatial correlations (Gaussian) for each wavenumber define p for random
numbers, n

® Resulting pattern in grid-point space r:

— clipped such thatr € [—1, +1]

— applied at all model levels to preserve vertical structures**

— **Except: tapered to zero at model top/bottom, avoiding:
e instabilities due to perturbations in the boundary layer;

e perturbations in the stratosphere due to well-constrained clear-skies radiation
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SPPT pattern

® 2D random pattern of spectral
coefficients, r:

— Time-correlations: AR(1)
— Space-correlations: Gaussian
— Clipped such thatr € [—1, +1]

® Applied at all model levels to preserve
vertical structures**

® **Except: tapered to zero at model
top/bottom
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3 correlation scales:

i) 6 hours, 500 km, o =0.52
i) 3days, 1000km, o =0.18
iii) 30days, 2000km, o =0.06
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SPPT pattern
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SKEB scheme

® [ntroduced into IFS, 2010:
® Attempting to simulate a process otherwise absent from the model —
upscale transfer of energy from sub-grid scales

® Represents backscatter of Kinetic Energy (KE) by adding perturbations to U
and I/ via a forcing term to the streamfunction:

where F™is a 3D random pattern field,
Bt is the mean KE input by F* alone,
Diot is an estimate of the total dissipation rate due to the model,

by is the backscatter ratio — a scaling factor.

Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memo.);
Shutts (2005, QJRMS); Berner et al. (2009, JAS)
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SKEB pattern

® 3D random pattern field F*:

— First-order auto-regressive [AR(1)] process for evolving F*
F*(t + At) = ¢F*(t) + pn(t)
where ¢ = exp(—At /1) controls the correlation over timestep At;

and spatial correlations (power law) for wavenumbers define p for random

numbers, n

— vertical space-(de)correlations: random phase shift of n between levels
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SKEB perturbations

® D, is an estimate of sub-grid scale production of KE, and includes:

— Dpym = humerical dissipation from

» explicit horizontal diffusion (bi-harmonic, V?); and

 estimate due to semi-Lagrangian interpolation error

— Dyewp = dissipation due to orographic Gravity Wave Drag parameterisation

— D.on = estimated KE generated by updraughts and detrainment within

sub-grid deep convection
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How are the perturbation patterns determined?

® Characteristics of model errors cannot be determined from observations:
e uncertain processes small-scale (space and time)

e |ack of observational coverage

® Can attempt to use models: coarse-graining studies (e.g. Shutts and Palmer,
2007)

e take high-resolution model simulations as “truth”

e average model fields and tendencies (or streamfunction) to a grid-
resolution typical of the forecast model

e compare the contribution of “sub-grid” scales in the coarse-grained
simulation with parametrisations in the forecast model

e coarse-graining studies have been used to justify and inform scales in SPPT
and SKEB
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IFS ensembles: ENS and System 4 (S4)

® ENS = ensemble prediction system for

e medium-range forecasts (up to 15 days) and

e monthly forecasts (up to 32 days) [Frederic Vitart, Friday 241"]
® S4 = seasonal forecasting system [Tim Stockdale, Friday 24t]

e upto 7 months

® Both systems represent model error with SPPT and SKEB

® ENS:
e 1 control forecast + 50 perturbed members
e T639 (~32 km) resolution to day 10; T319 (~65 km) days 10-15
e 91 vertical levels, up to 0.01hPa
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Impact of SPPT and SKEB in ENS

z500hPa, Northern Extra-tropics
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For details of skill measures:

Martin Leutbecher’s lectures
(22nd/23rd April)
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Impact of SPPT and SKEB in ENS
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Impact of SPPT and SKEB in ENS

® Adding SPPT + SKEB perturbations:

* increases ensemble “spread” (= ensemble standard deviation), i.e.
ensemble members describe greater region of the parameter space

e some reduced ensemble mean errors

® In the extra-tropics:

e SPPT and SKEB each have a similar impact, i.e. perturbations are
successfully adopted and evolved by the model

e Experiments: perturbations in days 0-5 contribute most effect

® In the tropics:

e SPPT has a much greater impact (in terms of both spread and error) than
SKEB, i.e. SPPT perturbations more able to excite modes that the model
can evolve

e Experiments: effect of perturbations rapidly lost at all times
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Impact of SPPT and SKEB in S4

® System 4 (S4), November 2011: introduction of (revised) SPPT and SKEB
® Operational configuration:
e T255 (~80 km), 91 vertical levels (up to 0.01 hPa)

e Coupled ocean model: NEMOVvV3.0, 1 degree (~110 km), 42 vertical levels
51 members

Initialised on 15t of each month

Forecast lead times: to 7 months

® Recent work with S4 to assess impact of stochastic schemes

® For longer time-scales, consider impact in terms of:

e Noise-induced drift, i.e. change in model mean

e Noise-activated regime transition, e.g. Pacific-N. American region regimes
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Impact of SPPT and SKEB in S4

® Recent work with S4 to assess impact of stochastic schemes:
e Hindcast period: 1981-2010
e Start dates: May, Aug & Nov
e Ensemble size: 51

e Forecasts to lead times: 4-7 months

® Considers impact of SPPT + SKEB on:
e Systematic errors
e Madden-Julian Oscillation (MJO) statistics
e ENSO forecast quality

e Circulation regimes over the Pacific-North American region [Franco Molteni,
Thurs 23]

Weisheimer et al., (2014)
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Impact of SPPT and SKEB in S4: biases

Outgoing Longwave Radiation (DJF 1981-2010)
stochphysOFF — ERA-I

 SPPT+SKEB: reduction of overly active
tropical convection

* Similar reductions in excessive:
* Total cloud cover
* Total precip
e Zonal winds (850 hPa)

* SPPT is responsible for most of the
difference; SKEB has little impact

-56-48-40-32-24-16 -8 8 16 24 32 40 48 56 From Antje Weisheimer
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Impact of SPPT and SKEB in S4: Madden Julian Oscillation
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Impact of SPPT & SKEB in S4: Increased amplitude of MJO events
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Impact of SPPT & SKEB in S4: ENSO forecast quality - Nifho4 SSTs
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stochphysOFF

System 4

System 4 has:

= Reduced forecast errors

" |Increased ensemble spread
= |Improved correlation

From Antje Weisheimer
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Impact of SPPT & SKEB in S4: Pacific North America (PNA) circulation regimes

E etails: Cluster 1 Cluster 2 Cluster 3 Cluster 4

B eeamibiteni “Pacific Trough” “PNA+” “PNA-" “Alaskan Ridge”

(Tuesday 13t May)
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Stochastic physics: summary

® Model error occurs due to unresolved and misrepresented processes
e finite-resolution of a discrete numerical model

e parametrisations must describe multi-scale sub-grid processes in bulk

® Difficult to characterise sources of model errors due to lack of observations
® Without representing model error, ensemble forecasts are under-dispersive
® Stochastic methods for representing model error improve ensemble reliability

® ECMWE ensembles include 2 stochastic physics schemes:

e SPPT: representing uncertainty due to sub-grid physics parameterisations
e SKEB: simulating upscale transfer of kinetic energy from unresolved scales

® Medium-range: increased ensemble spread, greater probabilistic skill

® Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes
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Stochastic physics: brief outlook for IFS

® Upcoming change to SKEB: removing
orographic gravity wave drag
contribution to dissipation rate B e e e A T i s M o A o
estimate — reduces excessive spread in
low-level winds near orography

V850hPa, t+24h: [top] error; [bottom] spread (m s)

and X ;- has little uncertainty.

- in

- lt [ — e

® Exploring alternative perturbations - 2. ¥ ' -
for radiation tendencies: - = -
In SPPT, we perturb: o e —_I-
X = Xgap + Xewp + Xmix + Xcon + Xeep T - ' -
But, - T T N -y o
™ - J — l\"—'_"f‘ * -_

XRAD 3 Xclr i3 Xcld - -

Need a way to perturb relative to X;4.
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