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»’(“ Abstract and key learning points

The aim of this session is to introduce the main sources of uncertainty that lead to forecast
errors. The weather prediction problem will be discussed, and stated in terms of an
appropriate probability density function (PDF). The concept of ensemble prediction based
on a finite number of integration will be introduced, and the reason why it is the only
feasible method to predict the PDF beyond the range of linear growth will be illustrated.

By the end of the session you should be able to:
= explain which are the main sources of forecast error

= jllustrate why numerical prediction should be stated in probabilistic terms
= describe the rationale behind ensemble prediction
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»’?‘ Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction
4

The ECMWF medium-range/monthly ensemble
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»’(‘ 1. Numerical Weather Prediction (NWP) models

ECMWF MODEL / ASSIMILATION SYSTEM

The behavior of the atmosphere
is governed by a set of physical
laws that express how the air
moves, the process of heating
and cooling, the role of moisture,
and so on.

Interactions between the
atmosphere and the underlying
land and ocean are important in
determining the weather.
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»’(‘ 1. Numerical Weather Prediction (NWP) models
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»’(“ 1. Model grid & v-levs of the T1279/T639 models
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Y
»’(‘ 1. Observations coverage and accuracy

To make accurate forecasts it is important to know the current weather:

» ~ 155M obs (99% from satellites) are received daily;
» ~ 15M obs (96% from satellites) are used every 12 hours.

ECMWF Data Coverage (All obs DA) - AMSU-A ECMWF Data Coverage (All obs DA) - AMV IR
25/Feb/2015; 00 UTC 25/Feb/2015; 00 UTC
Total number of obs = 544349 Total number of obs = 330439

. 58271 Noaals  » 122319 Noaal & 110541 Noaaia TO044 ACLA . 107160 METOP-A « 78014 METOP-B
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»’(‘ 1. Observations coverage and accuracy

To make accurate forecasts it is important to know the current weather:

» ~ 155M obs (99% from satellites) are received daily;
» ~ 15M obs (96% from satellites) are used every 12 hours.

ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar

25/Feb/2015; 00 UTC 25/Feb/2015; 00 UTC
Total number of obs = 63831

0GRAGE-Be 0 COSMIC-a 0 COSMIC-4 10490 COSME-6 23155

OTERRASAR-X 10430 COSMME-1 20423 METOME  7785COSMIGS O METOP-A

ECMWF Data Coverage (All obs DA) - GPSRO

Total number of obs = 72283
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»’(‘ 1. Obs are assimilated to estimate the initial state

Time

Observations Observations Observations

| ! !

Forecast

Forecast

Analysis |—> Analysis |—> Analysis IM’

Medium-range forecast

e (Observations are used to correct errors in the short forecast from the

previous analysis time
e Every 12 hours ~ 15M observations are assimilated to correct the 100M

variables that define the model’s virtual atmosphere
e The assimilation relies on the quality of the model
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»’(‘ 1. Satellite data used at ECMWF
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»’(‘ 1. Forecast improvements over NH and SH for Z500

Improved models and data-assimilation systems, larger number of satellite observations
and increased computer power contributed to forecast improvements, and a reduction of
the gap between NH and SH scores.

. [y 7 MHEM [y 3 MHemM

500hPa geopotential height ————— Day 7 SHem ——— Day 3 SHem

Anomaly correlation ——————— Day 10 NHeMm == Day 5 NHem

12-month running mean ~————— Day 10 SHem  ———— Day 5 SHem

[centerad on the middie of the window)

100 NH: 2d/25y
(2014-1989)
SH: 2d/16y
(2014-1998)
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»’?‘ Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction
4

The ECMWF medium-range/monthly ensemble
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»’(‘ 2. Forecast improvements over Europe for Z500

Over Europe, on average 6-day forecasts for Z500 have ACC of about 0.85, and forecasts
have ACC of about 0.6 up to about 8.5-9 days.
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»’f 2. February 2015: drop in forecast skill

But on single cases we still see severe forecast busts. In February 2015, 6-day forecasts
issued on the 2" and the 8t had ACC of about 40%, much less than their average ACC
value of 0.85.
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»’f 2. February 2015: drop in forecast skill

Consider the t+144h
forecasts issued on 8@00
and valid for 14@00
(middle): not only the HRES
and the ENS-control, but
also the whole ENS
members showed a drop in
skill. This can be detected
also 2 days earlier (bottom)
and later (top).

This unpredictable situation
was flagged by the ENS,
which showed a very large
spread.
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»’f 2. February 2015: drop in forecast skill

Consider the t+144h
forecasts issued on 8@00
and valid for 14@00
(middle): not only the HRES
and the ENS-control, but
also the whole ENS
members showed a drop in
skill. This can be detected
also 2 days earlier (bottom)
and later (top).

This unpredictable situation
was flagged by the ENS,
which showed a very large
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»’f 2. February 2015: drop in forecast skill
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»’(“ 2. Why do forecasts fail?

Forecasts can fail because:

= The initial conditions are not accurate enough, e.g. due to poor coverage and/or
observation errors, or errors in the assimilation (initial uncertainties).

= The model used to assimilate the data and to make the forecast describes only
in an approximate way the true atmospheric phenomena (model uncertainties).

ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar
26/Feb/2015; 00 UTC
Total humber of obs = 64161

t=T2

t=T1 /
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»’(‘ 2. The atmosphere chaotic behavior

Furthermore, the atmosphere is a chaotic system, with flow-dependent errors growth.
This was illustrated for the first time by Edward Lorenz, with his 3-dimensional model.
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»’?‘ Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction
4

The ECMWF medium-range/monthly ensemble
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»’(‘ 3. What is the aim of weather forecasting?

We have seen that single forecasts can fail due to a combination of initial and model
uncertainties, and that the NWP problem is made extremely complex by the chaotic
nature of the atmosphere.

= Does it make sense to issue single forecasts?
= Can something better be done?
= More generally, what is the aim of weather forecasting?

= Should it be to predict only the most likely scenario, or should it aim to predict also its
uncertainty, for example expressed in terms of weather scenarii or probabilities that
different weather conditions can occur?

SOECMWEF  ECMWF Predictability TC (Apr 2015) - Roberto Buizza: Sources of uncertainty
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»’(“ 3. Ensemble prediction

Temperature Temperature
fc;
fc,
PDF(t)
realit

PDF(0)

Forecast time
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" 3.US Storm, 27-28/01/2015: single HRES fc

Monday 26 January 201512 UTC ecmf t+24 VT'Tuesday 27 January 2015 12 UTC surface Mean sea level pressure
Monday 26 January 2015 12 UTC ecmft+42VT:Wednesday 28 January 2015 06 UTC surface Convective precipitation
1 2 s 0 EY EY © £ @ 0 25

Single HRES fcs
failed to positioned
correctly the
storm, and this
lead to snowfall
overestimation for
NY of in the 24-36-
48h forecasts.

MLSP+TP maps
show a 150-200 km
eastward shift in
the storm centre.
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" 3.Us Storm, 27-28/01/2015: ENS PR fcs

ENS-based probabilistic forecasts can be used to estimate the level of confidence
(predictability) of single forecasts. They show that NY was closer to the edge of the area
with high probability of more than 30mm of precipitation (between 27@00 and 28@06)

than Boston, indicating higher uncertainty.
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" 3.Us Storm, 27-28/01/2015: ENS PR fcs

These figures show a larger version of the probability maps issued on 26 @00 (left; t+36h)
and 25@00 (right; t+60h).

ENS PR[TP(27@00-28@06)>30mm]

0.0v 0.156 03 04 05 as 07 08 09

26@00+36h
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3. US Storm, 27-28/01/2015: ENS PR fcs

ENS-based probabilistic forecasts expressed in terms of CDF shows that the fcs for NY were
more uncertain (the slope of the CDF curves is steeper) than the fcs for Boston.
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»’(‘ 3. A necessary ensemble property: reliability

O O

A reliable ensemble has, on
average over many cases M,
spread measured by the
ensemble standard deviation
o, equal to the average error
of the ensemble mean eg,,:
<0>\=<€r>m
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A}
»’(‘ 3. In a reliable ensemble, small spread>small error

Case 1 z ,a’*

In a reliable ensemble, small
ensemble standard deviation
indicates a more predictable
case, i.e. a small error of the
ensemble mean e,
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»’(“ 3. Track dispersion & predictability: Sandy (Oct 2012)

Sandy (OCt 2012) - DiSperSion Of Eﬁﬂfvﬁﬁiﬂg‘i ﬁlEpi':s.w;mmm km radius durirg the nest 240 hours

. tacks: solid=2PER; dot=Ere Idean[repored minimum cemiral pressure (hPa) 2@ |
!ENS tracks in the 10d forecast g R S
issued on 2012.10.23@00 was

relatively large after forecast day T o

5, indicating high uncertainty on 5 :

direction and landfall location. o ' o
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»’(“ 3. Track dispersion & predictability: Gonzalo (Oct 2014)

Gonzalo (Oct 2014) - Dispersion of
ENS tracks in the 10d forecast
issued on 2014.10.13@12 was
relatively small for the whole 10
day range, indicating more
confidence on direction of travel.

CECMWF
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»’(“ 3. Track dispersion & predictability: Haiyan (Nov 2013)

Haiyan (Nov 2013) - Dispersion of
ENS tracks in the 10d forecast
issued on 2014.10.13@12 was
very small for the whole 10 day
range, indicating high confidence
on direction of travel.

CECMWF

Date 20121104 0O UTS @ ECMWE
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»’(“ 3. ENS spread as an index of predictability

Small ensemble spread
should identify
predictable conditions:

= On average, the
spread in 1998 (top left)
is smaller than in 1997
(bottom left), and the
control error is also
smaller (right)

= For both cases, areas
of smaller spread
indicates areas of small
error

LOECMWEF ECMWF Predictability TC (Apr 2015) - Roberto Buizza: Sources of uncertainty
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»’(‘ 3. In a reliable ensemble, <spread>~<er(EM)>

ENS Mean RMSE and ENS Spread

One way to check
the ensemble
reliability is to
assess whether
the time evolution
of the seasonal
average ensemble
standard deviation
and error of the
ensemble mean

500h

Pa geopotantial

MHam Extratropics ga 20012900, 100 13004 1300
MovDecdan

2500 - NH

EM rmze NovDecla =15

are Similar. 1 2 3 Forsmst Dy a 10 11 12 13 14 15
This plot shows
these two curves | s
for Z500 over NH i o ==
. ' —— —
in DN14J15. ] _ S — — ————

:_ "‘—u______‘__\_ - —_____ff‘fﬂf
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»’(‘ 3. In a reliable ensemble, <fc-prob>~<obs-prob>

One way to check the ensemble reliability
is to assess whether the average forecast
and observed probabilities of a certain
event are similar.

These plots compare the two
probabilities at t+144h and t+240h for
the event ‘24h precipitation in excess of
1/5/10/20 mm’ over Europe for ND14J15
(verified against observations).

e YR 2200

total precipitation wala =100
EUrops dat 32oke7=a, kn 1224 428 waksa =50
20141101 12UTC to 20150131 12UTC T+144 ]
cpar_ck ti mrfo prod 12T | Maan mathed: far
1
LEE
E-:-a
i
E a4
o
0z
a T T T
o %] 04 os a8
—— Wl 2200
total precipitation valus »10.0
Europs st amoter=o, kn 12540 425 ks 250
20141101 12UTC to 201 50131 12UTC T+240 Y
cpar_ck ti mrfo prod 12T | Maan mathed: far
1
0.8
-
E-:ua
i
E a4
=]
0z
a . i i ﬁ—\\ :
o %] 04 os a8

Fomcast probabilty

cECMWF ECMWF Predictability TC (Apr 2015) - Roberto Buizza: Sources of uncertainty

34




»’(“ 3. In areliable ensemble, <fc-prob>~<obs-prob>
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Y
»’(‘ 3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single

high-resolution forecast. These plots refer to t+144h precipitation forecasts (ND14J15).
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N
»’(‘ 3. Are ensembles more valuable than single fcs?

ENS probabilistic forecasts have higher Potential Economic Value (PEV) than the single
high-resolution forecast. These plots refer to t+144h 2m temp. forecasts (ND14J15).
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)
»’(‘ 3. Ensembles are more consistent

Ensemble-mean
forecasts issued 24-
hour apart and valid
for the same time are
more consistent than
corresponding single
forecasts.

Ensemble-averaging
filters dynamically the
unpredictable scales
(Zsoter et al 2009).
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»’?‘ Outline

1. The Numerical Weather Prediction (NWP) problem

2. Sources of forecast uncertainties and chaotic behaviour

3. Ensemble prediction as a practical tool for probabilistic prediction
4

The ECMWF medium-range/monthly ensemble
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»’(‘ 4. Sensitivity to initial and model uncertainty

UK(UK)-EC(EC) Z500 1996-12-17 12h t+120 EC(UK)-EC(EC) Z500 1996-12-17 12h t+120

What is the relative
contribution of initial and
model uncertainties to
forecast error?

Harrison et al (1999) have
shown that initial
differences explains most of
the differences between
ECMWEF-from-ECMWEF-ICs
and UKMO-from-UKMO-ICs
forecasts.
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»’f 4. How should initial uncertainties be defined?

The initial perturbations’ )

components pointing along
the directions of maximum

growth amplify most. T2

If we knew the directions of t=T1
maximum growth we could
estimate the potential
maximum forecast error.

t=0
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»’f 4. Definition of the initial perturbations

To formalize the computation of the

timeT
directions of maximum growth a metric

(inner product) should be defined to
‘measure’ growth.

The metric used at ECMWEF in the
ensemble system is total energy.

(1N
N

, . 1 -1 -1 -1 -1 Cp op
<x;Epy >_§”(VA §,-VA'C ,+VA'D, VA Dy+?TxTy)d2£dn

r

+[(R, Z—rlmx Inr,)ds
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»’(‘ 4. Asymptotic and finite-time instabilities

Farrell (1982) studying perturbations’ growth in baroclinic flows noticed that the long-time
asymptotic behavior is dominated by normal modes, but that there are other
perturbations that amplify more than the most unstable normal mode over a finite time
interval.

Farrell (1989) showed that perturbations with the fastest growth over a finite time interval
could be identified solving an eigenvalue problem defined by the product of the tangent

forward and adjoint model propagators. This result supported earlier conclusions by Lorenz
(1965).

Calculations of perturbations growing over finite-time interval intervals have been
performed, for example, by Borges & Hartmann (1992) using a barotropic model, Molteni
& Palmer (1993) with a quasi-geostrophic 3-level model, and by Buizza et al (1993) with a
primitive equation model.
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»’f 4. Singular vectors

The problem of the computation of the directions of maximum growth of a time evolving

trajectory is solved by an eigenvalue problem:

E;"*L'ELE;"?v = ov

where:
» E,and E are the initial and final time metrics
» L(t,0) is the linear propagator, and L* its adjoint
» The trajectory is time-evolving trajectory
» tis the optimization time interval
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»’(‘ 4. The operational ensemble in 2015

ENS includes 51 forecasts with resolution: . @ . @ .
e T,639L91 (~32km, 91 levels) from day 0to 10

e T,319L91 (~64km, 91 levels) from day 10 to 15 (32 at

OOUTC on Mon and Thu).

- .. . . Definition of the
Initial uncertainties are simulated by adding to the perturbed ICs l
unperturbed analyses a combination of T42L91 singular
vectors, computed to optimize total energy growth overa [ ) 50 |51
48h time interval (OTIl), and perturbations generated by
the ECMWF Ensembles of Data Assimilation (EDA) system.

Products

Model uncertainties are simulated by adding stochastic
perturbations to the tendencies due to parameterized
physical processes (SPPT and SKEB schemes).

The unperturbed analysis is given by the T 1279L137
4DVAR.

ENS runs daily at 00 and 12 UTC, with a TOA at 0.01 hPa.
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»’(‘ 4. Major changes of the ensemble configuration

Since 1992 the ENS configuration has been modified significantly several times.

CECMWF

ECMWEF Predictability TC (Apr 2015) - Roberto Buizza: Sources of uncertainty

Description Singular Vectors's characteristics Forecast characteristics
HRES |VRES | OTI Area past |future| sampl HRES VRES| Tend | # | Mod Unc |Coupling| refc suite
Dec 1992 Oper Impl T21 | L19 |36h globe NO | SVINI| simm T63 L19 10d |33 NO NO NO
Feb 1993 SV LPO " " " NHx " " " " " " " " " "
| Aug 1994 SV OTI " " 148h " " " " " " " " " " "
Mar 1995 SV hor resol T42 " " " " " " " " " " " " "
Mar 1996 NH+SH SV " " " (NH+SH)x " " " " " " " " " "
Dec 1996 resol/mem " L31 | " " " : " TL159 L31 " 51 " " "
Mar 1998 EVO SV " " " " SVEVO| " " " " " " " " "
Oct 1998 Stoch sch SPPT " " " " : : " " " " " STP " "
Oct 1999 vert resol " L40 | " " : : " " L40 " " " " "
Nov 2000 FC hor resol " " " " " " " TL255 " " " " " "
Jan 2002 TC SVs " " " | (NH+SH)x+TC " " " " " " " " " "
Sep 2004 sampling " " " " " " " " " " "
Jun 2005 rev sampl " " " " " " " " " " "
Feb 2006 resolution " L62 | " " TL399 L62 " " " " "
TL399(0-10) /
Sep 2006 VAREPS " " " " TL255(10-15) " 15d " " " "
HOPE
Mar 2008 VAREPS-mon " " " " " " [15d/32d | " " fromd10| 5*18y
Sep 2009 Rev SPPT " " " " " " " " " " "
TL639(0-10) /
Jan 2010 hor resol " " " " TL319(10-15) " " " revSTP " "
Jun 2010 EDA EPS " " " " ! " " " " " "
TL639(0-10) /
Nov 2010 | Rev Stoch scheme " " " " TL319(10-15) " [15d/32d | " " "
NEMO
Nov 2011 New ocean model " " " " " " " " from d10
Rev EDA-pert & refc
Jun 2012 suite " " " " ! " " "
vert resol & coupling TL639(0-10) /
Nov 2013 from d0 T42 | 91 |48h | (NH+SH)x+TC TL319(10-15) | L91 | 15d/32d |51
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»’(‘ Conclusion

+* A complete solution of the weather prediction problem can be stated in terms of an
appropriate probability density function (PDF). Ensemble prediction is the only feasible
method to predict the PDF using dynamical forecasts beyond the range of linear growth.

+** Initial and model uncertainties are the main sources of error growth. Initial
uncertainties dominate in the short range. Predictability is flow dependent.

*» The initial error components along the directions of maximum growth contribute most
to forecast error growth. These directions can be identified by the leading singular
vectors, computed solving an eigenvalue problem.

** ENS has changed many times since 1992. Now it includes 51 15-day forecasts twice a
day (00-12UTC), which are extended to 32 days twice a week (00OUTC Mon/Thu). Each
ENS ensemble member uses a coupled ocean-atmosphere forecasts with a T 639v319
variable resolution in the atmosphere and 91 vertical levels, and a 1-degree resolution
and 42 vertical levels in the ocean.
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