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The Integrated Forecasting System (IFS)

technology applied at ECMWF for the last 30 years … 

A spectral transform, semi-Lagrangian, semi-implicit 

(compressible) (non-)hydrostatic model
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Schematic description of the spectral transform 

method in the ECMWF IFS model

Grid-point space

-semi-Lagrangian advection

-physical parametrizations

-products of terms

Fourier space

Spectral space

-horizontal gradients

-semi-implicit calculations 

-horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

No grid-staggering of 

prognostic variables
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Several 

transpositions 

within the 

spectral 

transforms need 

to communicate, 

e.g. using MPI 

alltoallv
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Direct spectral transform (Forward)

Fourier transform:

Legendre transform:

FFT (fast Fourier 

transform)

using

NF  2N+1

points (linear grid)
(3N+1 if quadratic grid)

Direct Legendre transform

by Gaussian quadrature

using NL  (2N+1)/2

“Gaussian” latitudes (linear grid)
((3N+1)/2 if quadratic grid)

(normalized) associated Legendre polynomials
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Inverse spectral transform (Backward)
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A useful property of spherical harmonics
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Fast Multipole Method (FMM) and spectral 

filtering

FMM: We can do above sum for all points j 

in O(J+N) operations instead of O(J*N) !

(Boyd, 1992; Jakob-Chien and Alpert, 1997; Tygert 2008)

Example: From Christoffel-Darboux formula for associated Legendre polynomials

We can do a direct and inverse Legendre transform for a single Fourier mode as: 

For all j=1,..,J
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The Gaussian grid

Full grid Reduced grid

Reduction in the number of Fourier points at high latitudes is possible because the 

associated Legendre polynomials are very small near the poles for large m.

About 30% reduction in number of points

Note: number of points nearly equivalent to quasi-uniform icosahedral

grid cells of the ICON model.
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Standard 

reduced 

Gaussian 

grid
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octahedral 

reduced 

Gaussian 

grid
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current
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Spectral vs. physical space

2N+1 gridpoints to N waves : linear grid

3N+1 gridpoints to N waves : quadratic grid

4N+1 gridpoints to N waves : cubic grid

~ 1-2 Δ

~ 2-3 Δ

~ 3-4 Δ

Spatial filter range

Effective resolution of NWP models today : 6-8 Δ
(Abdalla et al, 2013)

(Wedi, 2014)
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Conservation of global mass

linear transform grid

cubic transform grid

Mass fixer
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Aliasing

 Aliasing of quadratic terms on the linear grid (2N+1 gridpoints

per N waves), where the product of two variables transformed 

to spectral space cannot be accurately represented with the 

available number of waves (as quadratic terms would need a 

3N+1 ratio).

 Absent outside the tropics in E-W direction due to the design 

of the reduced grid (obeying a 3N+1 ratio) but present 

throughout (and all resolutions) in N-S direction.

 De-aliasing in IFS: By subtracting the difference between a 

specially filtered and the unfiltered pressure gradient term at 

every time-step the stationary noise patterns can be removed 

at a cost of approx. 5% at T1279 (2 extra transforms).
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De-aliasing

E-W

500hPa adiabatic 

zonal wind 

tendencies (T159) 
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De-aliasing
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De-aliasing

N-S

500hPa adiabatic 

meridional wind 

tendencies (T159) 
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De-aliasing
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Kinetic Energy Spectra – 100 hPa
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Kinetic Energy Spectra – 100 hPa
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A fast Legendre transform (FLT)

(O’Neil, Woolfe, Rokhlin, 2009; Tygert 2008, 2010)

 The computational complexity of the ordinary spectral 

transform is O(N^3) (where N is the truncation number of 

the series expansion in spherical harmonics) and it was 

therefore believed to be not computationally competitive 

with other methods at very high resolution

 The FLT is found to be O(N^2 log N^3) for horizontal 

resolutions up to T7999 (Wedi et al, 2013)
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Number of floating point operations for direct or inverse spectral 

transforms of a single field, scaled by N2log3N
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Matrix-matrix multiply for each zonal

wavenumber m

Gaussian latitude
apply butterfly compression,

this step is precomputed only 

once!

Field, 

vertical level

total wavenumber

zonal

wavenumber
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Butterfly algorithm: 

pre-compute
kxsrxkrxs ACS 

With each level l, 

double the columns 

and half the rows
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Butterfly algorithm: 

apply Sf 
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Interpolative Decomposition (ID)

 The compression uses the interpolative decomposition (ID) 

described in Cheng et al (2005).

 The r x s matrix S may be compressed such that

With an r x k matrix C constituting a subset of the columns 

of S and the k x s matrix A containing a k x k identity as a 

submatrix. k is the ε-rank of the matrix S (see also e.g. 

Martinsson and Rokhlin, 2007).

 kxsrxkrxs ACS
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T1279 FLT 

using 

different ID 

epsilons for 

INV (1.e-3) + 

DIR (1.e-7)
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The FLT in a nutshell – O(N
2
log

3
N)

 Speed-up the sums of products between associated 

Legendre polynomials at all Gaussian latitudes and the 

corresponding spectral coefficients of a field (e.g. 

temperature on given level)

 The essence of the FLT:

 Exploit similarities of associated Legendre polynomials 

at all (Gaussian) latitudes but different total wave-number

 Pre-compute (once, 0.1% of the total cost of a 10 day 

forecast) a compressed (approximate) representation of 

the matrices (for each m) involved

 Apply the compressed (reduced) representation at every 

time-step of the simulation.
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The quadratic or cubic grid

 Adjustment of formal accuracy/relative resolution in 

spectral and physical space.

 All nonlinear rhs forcings, advection, moist quantities, 

physical forcings and surface processes are computed on 

the higher resolution grid. All horizontal derivatives 

(T,vor/div, u/v,ln p) and the spectral computations are 

“filtered” to the cubic truncation wavenumber.

(Wedi, 2014)
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The computational cost distribution with 

full radiation and high-res wave model
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Cost of communication as percentage of 

spectral transform cost

SAC Report 2015
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AVEC model intercomparison report 13km

SAC Report 2015
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AVEC model intercomparison report 3km

SAC Report 2015
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?

The energy cost of 

computing still bites us!
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Additional slides


