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Numerical Weather Prediction 

Parameterization of diabatic processes

Convection III: The IFS scheme

Peter Bechtold and Christian Jakob
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A bulk mass flux scheme

What needs to be considered 

Entrainment/Detrainment

Downdraughts

Link to cloud parameterization

Cloud base mass flux - Closure

Type of convection shallow/deep

Where does convection occur

Generation and fallout of precipitation
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Basic Features

• Bulk mass-flux scheme

• Entraining/detraining plume cloud model

• 3 types of convection: deep, shallow and mid-level - mutually 
exclusive

• saturated downdraughts

• simple microphysics scheme

• closure dependent on type of convection
• deep: CAPE adjustment

• shallow: PBL equilibrium

• strong link to cloud parameterization - convection provides source 
for cloud condensate
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Large-scale budget equations: 
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Large-scale budget equations

Cloud condensate: u u
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Momentum:
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Nota: These tendency equations have been written in flux form which by 
definition is conservative (not in advective form!!). It can be solved either 
explicitly (just apply vertical discretisation) or implicitly (see later). 



Occurrence of convection:

make a first-guess parcel ascent

Updraft Source Layer

LCL

ETL

CTL

1) Test for shallow convection: add T and q perturbation based on 

turbulence theory to surface parcel. Do ascent with w-equation and 

strong entrainment, check for LCL, continue ascent until w<0. If 

w(LCL)>0 and P(CTL)-P(LCL)<200 hPa : shallow convection

2) Now test for deep convection with similar procedure. Start 

close to surface, form a 30hPa mixed-layer, lift to LCL, do 

cloud ascent with small entrainment+water fallout. Deep 

convection when P(LCL)-P(CTL)>200 hPa. If not …. test 

subsequent mixed-layer, lift to LCL etc. … and so on until 300 

hPa

3) If neither shallow nor deep convection is found a 

third type of convection – “midlevel” – is activated, 

originating from any model level below 10 km if  

large-scale ascent and RH>80%.
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Cloud model equations – updraughts

E and D are positive by definition
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Downdraughts

1. Find level of free sinking (LFS)

highest model level for which an equal saturated mixture of 
cloud and environmental air becomes negatively buoyant

2. Closure
, ,     0.3d LFS u bM M   
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Cloud model equations – downdraughts

E and D are defined positive
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Entrainment/Detrainment (1)
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ε  and δ are generally given in units (m-1)

Scaling function to mimick a 
cloud ensemble

Constants
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Entrainment/Detrainment (2) 

Derbyshire et al. (2011)

Looks good: Note that shallow convective entrainment is typically a 
factor of 2 larger than that for deep convection

Entrainment formulation looks so simple  ε=1.8x10-3 (1.3-RH)f(p) so how 
does it compare to LES colours denote different values of RH
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Entrainment/Detrainment (3)

Organized detrainment:
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Precipitation
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Generation of precipitation in updraughts

Simple representation of Bergeron process included in c0 and lcrit

Liquid+solid precipitation fluxes:
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Where Prain and Psnow are the fluxes of precip in form of rain and snow at pressure 
level p. Grain and Gsnow are the conversion rates from cloud water into rain and cloud 
ice into snow. Evaporation occurs in the downdraughts edown, and below cloud base 
esubcld, Melt denotes melting of snow.
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Precipitation

u

u

prec

ufallout r
zw

V
MS




Fallout of precipitation from updraughts
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Closure - Deep convection
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scaling, time derivative 
then relates to mass 

flux: 
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Closure - Deep convection
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Nota: all the trick is in the PCAPEBL term=PCAPE not available to deep 
convection but used for boundary-layer mixing  (see Bechtold et al. 2014).

If PCAPEBL=0 then wrong diurnal cycle over land!
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Closure - Deep convection
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Solve now for the cloud base mass flux by equating 1 and 2 

Mass flux from the updraught/downdraught computation

initial updraught mass flux at base,  set proportional to 0.1Δp

contains the boundary-layer tendencies due to surface heat 
fluxes, radiation and advection 
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Closure - Shallow convection

Assume 0 convective flux at surface, then  it follows for cloud base flux
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Based on PBL equilibrium : what goes in must go out - including 
downdraughts
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Closure - Midlevel convection

Roots of clouds originate outside PBL

assume midlevel convection exists if there is large-scale ascent, 

RH>80% and there is a convectively unstable layer

Closure:

bbu wM ,



NWP Training Course Convection III: The IFS scheme Slide 20

Impact of closure on diurnal cycle 

JJA 2011-2012 against Radar          

Bechtold et al., 2014, J. Atmos. Sci.
ECMWF Newsletter No 136 Summer 2013

Obs radar
NEW=with PCAPEBbl term
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How does diurnal convective precipitation scale?          

TP=total precipitation  HF=surface enthalpy flux   BF=surface buoyancy flux
NOTE: in NEW = revised diurnal cycle surface daytime precipitation scales as 
the surface buoyancy flux
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Vertical Discretisation 
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Fluxes on half-levels, state variable and tendencies on full levels
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Numerics:  solving Tendency 

advection equation explicit solution
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In order to obtain a better and more stable “upstream”
solution (“compensating subsidence”, use shifted half-
level values to obtain:
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Use vertical discretisation with fluxes on half levels 
(k+1/2), and tendencies on full levels k, so that
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For “upstream” discretisation as before one obtains:

Numerics:  implicit solution
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Numerics:   Semi Lagrangien advection
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Tracer transport experiments

Single-column simulations (SCM)

Surface precipitation; continental convection during ARM
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Tracer transport in SCM

Stability in implicit and explicit advection

instabilities

• Implicit solution is stable. 

• If mass fluxes increases, mass flux scheme behaves like a diffusion scheme: well-

mixed tracer in short time
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Tracer transport experiments (2)

Single-column model against CRM

Surface precipitation; tropical oceanic convection during TOGA-COARE
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Tracer transport

SCM and global model against CRM

1. Boundary-layer Tracer

• Boundary-layer tracer is quickly 

transported up to tropopause

• Forced SCM and CRM simulations 

compare reasonably well

• In GCM tropopause higher, normal, as 

forcing in other runs had errors in upper 

troposphere
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2. Mid-tropospheric Tracer

• Mid-tropospheric tracer is transported 

upward by convective draughts, but also 

slowly subsides due to cumulus induced 

environmental subsidence 

• IFS SCM (convection parameterization) 

diffuses tracer somewhat more than CRM 

Tracer transport

SCM and global model against CRM


