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Numerical Weather Prediction 

Parametrization of diabatic processes

Convection I: an overview

Peter Bechtold 
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Convection

• Lectures:
• An overview (only about 5 simple principles to remember)

• Parametrisation of convection

• The ECMWF mass-flux parametrisation and Tracer transport

• Forecasting of Convection

• Exercises
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Convection

• Aim of Lectures:
The aim of the lecture is only to give a rough overview of convection in the

context of the general circulation. The student is not expected to be able to

directly write a new convection code- the development and full validation of a

new convection scheme takes years. The best exercise is to start with an

existing code, run some offline examples on Soundings and dig in line by line

….. The trend is toward explicit representation of deep convection in limited

area NWP (no need for parameterization), but for global we are not there yet,

and will need parameterizations for the next decade

• Offline convection Code:
Can be obtained from peter.bechtold@ecmwf.int

mailto:peter.bechtold@ecmwf.int
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Convection Parametrisation and Dynamics -

Text Books

• Emanuel, 1994: Atmospheric convection, OUP

• Houze R., 1993: Coud dynamics, AP

• Holton, 2004: An introduction to Dynamic Meteorology, AP

• Bluestein, 1993: Synoptic-Dynamic meteorology in midlatitudes, Vol II. OUP

• Peixoto and Ort, 1992: The physics of climate. American Institute of Physics

• Emanuel and Raymond, 1993: The representation of cumulus convection in 
numerical models. AMS Meteor. Monogr.

• Smith, 1997: The physics and parametrization of moist atmospheric 
convection. Kluwer

• Dufour et v. Mieghem: Thermodynamique de l’Atmosphère, 1975: Institut 
Royal météorologique de Belgique

• Anbaum, 2010: Thermal Physics of the atmosphere. J Wiley Publishers

AP=Academic Press;  OUP=Oxford University Press
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Convection=heat the 

bottom&cool the top

Pre-frontal deep convection July 2010 near Baden-
Baden Germany

Rayleigh-Benard cellular 
convection

Classic plume experiment
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Moist convection : Global

ITCZ 

frontal and post 

frontal convection

African Squall lines 

diurnal cycle

Sc convection
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Outline

General:

• Convection and tropical circulations

• Tropical waves

• Middle latitude Convection

Useful concepts and tools:

• Buoyancy 

• Convective Available Potential Energy

• Soundings and thermodynamic diagrams

• Convective quasi-equilibrium

• Large-scale observational budgets
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It’s raining again… 2000/2001 annual precipitation 

rate from IFS Cy40r1 (2014)  GPCP2.2 dataset

about 2.7-2.8 mm/day is 
falling globally, but most 
i.e. 5-7 mm/day in the 
Tropics
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Model Tendencies – Tropical Equilibria

Above the boundary layer, for Temperature  there is on average radiative-convective 

equilibrium; and convective-dynamic equilibrium over the large-scale disturbance, whereas  for 

moisture there is roughly an equilibrium between dynamical transport (moistening) and 

convective drying.      - Global Budgets are very similar

Nevertheless, 

the driving force 

for atmospheric 

dynamics and 

convection is  

the radiation
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Distribution of convective clouds

Johnson et al., 1999, JCL

Tri-modal: Shallow cumulus, Congestus attaining the melting level, Deep 
penetrating convection
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Distribution of deep and shallow IFS Cy40r1 (2014)

Deep type 
including 
congestus
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Convection and tropical circulations (1)

ITCZ and the Hadley meridional circulation: the role of 

trade-wind cumuli and deep tropical towers



NWP Training Course Convection I: An Overview Slide 13

Convection and tropical circulations (2)

The Walker zonal Circulation

From Salby (1996)
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Rossby, Kelvin, MJO and  African easterly Waves
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Analytical: solve shallow water equations (see Lecture Note)
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The Kelvin wave                The n=1 Rossby wave

V=0, eastward moving ~18 m/s

sym. around equator

OLR anomaly shaded, winds max at equator

westward moving ~5 m/s

sym. around equator
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Wavenumber frequency Diagrams of OLR

ECMWF Analysis

Cy40r1 (2014)

software courtesy 
Michael Herman (New 
Mexico Institute)

(all spectra have been 
divided by their own= 
smoothed background)
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Rossby & MJO using OLR filtering 5.3.2015-16.3 2015 

Forecast base time 2015 03 09

software courtesy M Herman following Wheeler and Weickman (MWR 2001)
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Normal mode projection and filtering 

850 hPa

software Žagar et al. (Geosc. Mod. Dev. 2015)
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Normal mode projection and filtering 

200 hPa
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U850

U200

27 November 2011: Meteosat 7 + ECMWF Analysis

The MJO over Indian Ocean



NWP Training Course Convection I: An Overview Slide 21

MJO composite

vertical structure of T,U,q anomalies

Note: tilted 
baroclinic structure

Software courtesy 
Michael Hermann
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Kelvin composite

vertical structure of T,U,q anomalies

Note: The 
propagation to the 
stratosphere and 
different tilt of T-
anomalies in tropos 
and stratosphere
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African Easterly waves

Hovmoeller diagrams as 

an easy way to plot 

waves (propagation + 

amplitude)

700 hPa wind, MSLP, and precip
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Summary: the weather and thermal equilibria   

~0.5 K/100 m

J/kg

w ~ -0.5 cm/s
subsidence

100 mm/day precipitation heats the atmospheric column by 2867 W/m2 or by 
25 K/day on average. This heating must be compensated by uplifting of 
w ~ 10 cm/s   heavy precip/convection requires large-scale perturbation.
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Midlatitude Convection (1)

Europe climatology (Frei and Schär, 1998)

In Europe most intense precipitation is associated with orography, especially 
around the Mediterranean, associated with strong large-scale forcing and 
mesoscale convective systems



Midlatitude Convection (2) 

Squall line system conceptual and observed

• Distinctive convective and 
trailing stratiform regions 
with characteristic inflow 
(Houze et al. 1989)

Supercell over Central US, Mai 
1998, flight level 11800 m
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Midlatitude Convection (3)

European MCSs (Morel and Sénési, 2001)

Density Map of Triggering ….. over Orography
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Midlatitude Convection (4)

European MCSs (Morel and Sénési, 2001)

Time of Trigger and mean propagation

European (midlatitude) MCSs essentially form over orography (convective inhibition –see 

later- offset by uplift) and then propagate with the midtropospheric flow (from SW to NE)
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Midlatitude Convection (5) 

along the main cold frontal band and in the cold core of 

the main depression – 17/02/97 during FASTEX
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Midlatitude Convection (6) 

Forcing of ageostrophic circulations/convection in the 

right entrance and left exit side of upper-level Jet

Thermally direct circulation

Thermally indirect circulation

ag fvvvf
dt

du
 )(

Acceleration/deceleration of Jet

Total energy is conserved: e.g. at the exit region 

where the Jet decelerates kinetic energy is 

converted in potential energy 
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Midlatitude Convection (7) 

Tornadic Storms

A useful quantity in estimating the

storm intensity is the“bulk” Richardson

number R=CAPE/S2
w

z

V
P zL







Conversion of horizontal vorticity at front in vertical vorticity by tilting in updraft

Importance of wind shear: Interaction of updraught with environm. Shear creates 
Rear Flank Downdraught

(from  Lemon and 

Doswell, 1979) 

(from  J Klempp 1987) 
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Summary: effects and cause of convection

• Convection transports heat, water vapor, momentum … and chemical 
constituents upwards …. Water vapor then condenses and falls out -> net 
convective heating/drying

• Deep Convection (precipitating convection) stabilizes the environment, an 
approximate picture (not true for diurnal cycle convection!)  is to consider 
it as reacting to the large-scale environment (e.g. tropical waves, mid-
latitude frontal systems) =“quasi-equilibrium”; shallow convection 
redistributes moisture and heat

• The effect of convection (local heat source) is fundamentally different in 
the middle latitudes and the Tropics. In the Tropics the Rossby radius of 
deformation R=N H/f (N=Brunt Vaisala Freq, f=Coriolis parameter, 
H=tropopause height) is infinite, and therefore the effects are not locally 
bounded, but spread globally via gravity waves – “throwing a stone in a lake”
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Buoyancy (1)- Archimedes said ‘Eureka!’ 

Body in a fluid Assume fluid to be in 

hydrostatic equlibrium
g

dz

dp
2

2 

.2 const ghp 22 

Forces:

Top yxghFtop  12

Bottom yxghFbot  22

Gravity zyxgFgrav  1

Net Force: zyxgzyxgyxhhgFFFF gravbottop  )()( 121122 
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Emanuel, 1994
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Buoyancy (2)

Vertical momentum equation:
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Buoyancy (3)
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Buoyancy (4) T and P and Contributions

2
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Buoyancy (5) moist atmosphere

0.608 l

T
B g g q q

T





  
      

 

effects of humidity and condensate need to be taken into account

In general all 3 terms are important. 1 K perturbation in T is equivalent to 5 g/kg 

perturbation in water vapor or  3 g/kg in condensate
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Non-hydrostat. Pressure gradient effects

g
z

p

dt

dw


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1

CRM analysis of the terms

Physics:

Vector field of the buoyancy pressure-

gradient force for a uniformly buoyant 

parcel of finite dimensions in the x-z-plane. 

(Houze, 1993, Textbook)
Guichard and Gregory 
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Convective Available Potential Energy (CAPE)

Definition:

dz
T

TT
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CAPE represents the amount of 

potential energy of a parcel lifted 

to its level of neutral buoyancy. 

This energy can potentially be 

released as kinetic energy in 

convection.
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Much larger than observed - what’s going 

on ?
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Convection in thermodynamic diagrams (1)

using Tephigram/Emagram

Idealised Profile

LCL

LFC

LNB

CIN
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Convection in thermodynamic diagrams (2)

using equivalent Potential Temperature and 

saturated equivalent Potential Temperature 

θ

Θe(T,q)

Θesat(T)

Θe is conserved during 

moist adiabatic ascent
CAPE

Note that  no CAPE is available for parcels ascending above 900 hPa and that the tropical 

atmosphere is stable above 600 hPa (θe increases) – downdrafts often originate at the 

minimum level of θe in the mid-troposphere.

GATE Sounding
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Mixing and 3D flow

subcloud and cloud-layer Circulations

From high-resolution LES simulation (dx=dy=50 m) 

Vaillancourt, You, Grabowski, JAS 1997
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Mixing models

undiluted

after Raymond,1993

entraining plume cloud top entrainment stochastic mixing
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Effect of mixing on parcel ascent

No dilution

Heavy dilution

Moderate dilution
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Large-scale effects of convection (1) 

Q
1

and Q
2 

In convective 

regions these 

terms will be 

dominated by 

convection

Thermodynamic equation (dry static energy) :
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Define averaging operator over area A such that:
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A
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1
and 

Apply to thermodynamic equation, neglect horizontal second order terms, use 

averaged continuity equation:
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“large-scale observable” terms “sub-grid” terms

why use s and not T

s =CpT+gz

ds/dz= CpdT/dz+g

If dT/dz=-g/Cp (dry adiabatic 

lapse rate), then ds=0
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Large-scale effects of convection (2)

Q
1

and Q
2

This quantity can be derived from observations of the “large-scale” terms on the 

l.h.s. of the area-averaged equations and describe the influence of the “sub-grid” 

processes on the atmosphere.

Define:
p

s
ecLQQ R







)(1

Apparent heat source

Analogous:
p

q
LecLQ







)(2

Apparent moisture sink

p

v
Q h


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

 
3

Apparent momentum source

Note that:

p

h
QQQ R
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
21 with Lqsh  Moist static energy
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Large-scale effects of convection (3)

vertical integrals of Q
1

and Q
2

HSL
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dp
QTwCL

g

dp
Q

g

dp
Q

Ps

Pt

RPsPp

Ps

Pt

R

Ps

Pt
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HLLqwLL
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dp
Q PsP
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  Pr)(Pr2 

Surface Precipitation 

flux

Surface Precipitation

Surface sensible 

Heat flux

Surface latent 

Heat flux
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Large-scale effects of convection (3)

Deep convection

Tropical Pacific

Yanai et al., 1973, JAS

Tropical Atlantic

Yanai and Johnson, 1993

Note the typical tropical maximum of Q1 at 500 hPa, Q2 maximum is lower and 

typically at 800 hPa
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Large-scale effects of convection (5)

Shallow convection

Nitta and Esbensen, 1974, MWR
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Zonal mean convective tendencies (deep & 

shallow) July 2013 and mass flux in  IFS

Heating                                 moistening 

cloud layer                           drying subcloud layer
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Effects of mesoscale organization 

The two modes of convective heating

Effects on heating

700

-2
(K/day)

convective

stratiform

total

1000
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100

2 4 60
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300
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Convective quasi-equilibrium 

Arakawa and Schubert (1974) postulated that the level of activity of convection is 

such that their stabilizing effect balances the destabilization by large-scale processes.

Observational evidence: v (700 hPa)

 (700 hPa)

Precipitation

GARP Atlantic Tropical Experiment (1974)

Thompson et al., JAS, 1979
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Summary 

• Convection affects the atmosphere through condensation / 

evaporation and eddy transports

• On large horizontal scales convection is in quasi-equilibrium with 

the large-scale forcing

• Q1, Q2 and Q3 are quantities that reflect the time and space 

average effect of convection (“unresolved scale”) and stratiform 

heating/drying (“resolved scale”)

• An important parameter for the strength of convection is CAPE

• Shallow convection is present over very large (oceanic) areas, it 

determines the redistribution of the surface fluxes and the 

transport of vapor and momentum from the subtropics to the 

ITCZ


