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Outline

• KF, EKF, EnKF

• Hybrid Var-EnKF methods

• The Ensemble of Data Assimilations (EDA) method

• Hybrid Gain Ensemble Data Assimilation 
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Question: “How can we set up an ensemble data 
assimilation system for a large dimensional system without 
using an Ensemble Kalman Filter?” 

The EDA (Ensemble of Data Assimilations, Isaksen et al., 
2007) is one possible answer.

The EDA method
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For a linear system (linear model M, linear observation operator 

H) the data assimilation update is:

(1)

Assuming background (Pb), observation (R) and model errors (Q) 

to be statistically independent, the evolution of the system error 
covariances is given by:

(2)

The EDA method
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Consider now the evolution of the same system if we perturb the 
observations and the forecast model with random  noise drawn 
from the respective error covariances:

(3)

where η~N(0,R), ζ~N(0,Q).

If we define the differences between the perturbed and 
unperturbed state and , their evolution is 
obtained by subtracting the unperturbed state evolution 
equations from the perturbed ones, i.e. (3)-(1):

(4)

The EDA method
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(4)

• i.e., the perturbations from the control evolve with the same 
update equations of the state.

How do the errors evolve? 

If we compute the covariance of the perturbations in (4) we 

obtain:      

(5)

The EDA method
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(5)

• These are the same equations for the evolution of the error 
covariances of the control:

(2)

provided that the applied perturbations ηk, ζk  have the right 

covariances (R, Q)

The EDA method
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What does all this mean in practice?

• We can use an ensemble of perturbed data assimilation cycles 

to simulate the errors of our reference DA cycle;

• The ensemble of perturbed DAs should be as similar as 

possible to the reference DA (i.e., same or similar K matrix, 

M, H, and resolution)

• The applied perturbations ηk, ζk must have the required error 
covariances (R, Q);

• There is no need to explicitly perturb the background xb

The EDA method
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The EDA method

• 25 ensemble members using 4D-Var assimilations at reduced 
resolution

• T399 outer loop, T95/T159 inner loops. (Reference DA: T1279
outer loop, T159/T255/T255 inner loops). Note that in last quarter 
2015 the EDA will be run at T639, T191/T191 resol. and the 
reference DA at T1279 T255/T319/T399. 

• Observations randomly perturbed according to their estimated 

errors

• SST perturbed with climatological error structures

• Model error represented by stochastic methods (SPPT, Leutbecher, 
2009)
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The EDA method
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• The EDA simulates the error evolution of the 4DVar analysis cycle. 
As such it has two main applications:

1. Provide a flow-dependent estimate of analysis errors to initialize the 

ensemble prediction system (EPS)

2. Provide a flow-dependent estimate of background errors for use in 

4D-Var assimilation
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Applications of the EDA
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Improving Ensemble Prediction System by including EDA 
perturbations for initial uncertainty (implemented June 2010)

The Ensemble Prediction System (EPS) benefits from using EDA based 
perturbations. Replacing evolved singular vector perturbations by EDA 
based perturbations improve EPS spread, especially in the tropics.
The Ensemble Mean has slightly lower error when EDA is used. 
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• The EDA simulates the error evolution of the 4DVar analysis cycle. 
As such it has two main applications:

1. Provide a flow-dependent estimate of analysis errors to initialize the 
ensemble prediction system (EPS)

2. Provide a flow-dependent estimate of background errors for use in 
4D-Var assimilation
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EDA background perturbations 
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We have seen in the previous lecture that one way to incorporate 

ensemble information in 3-4DVar is to add a flow-dependent term to
the model of Pb (extended control variable):

Another way is to sample B completely and for all the assimilation 
window from the ensemble forecast perturbations (4D-En-Var):

� � = �� � °����

Still another way is to continuously update your B model using 
ensemble forecast perturbations (Hybrid EDA 4DVar)
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In variational DA, the B matrix is usually defined implicitly in terms of a 
transformation from the first guess departure (x-xb) to a control 

variable χ:
(x-xb) = Lχ

so that the implied B=LLT.

In the current wavelet formulation (Fisher, 2003), the variable 
transform can be written as:

K is the balance operator, i.e. the operator that links the control variables to 
the model variables 

Σb is the gridpoint variance of background errors 

Cj(λ,φ) is the vertical correlation matrix for wavelet index j

ψj are the set of radial basis function that define the wavelet transform.
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Cj(λ,φ) are full vertical correlation matrices, function of  (λ,φ). They
determine both the horizontal and vertical background error correlation 
structures;

In standard 4DVar Σb ,K and Cj are computed off-line using a 

climatology of EDA perturbations.

How do we make this error covariance model flow-dependent?

We look for flow-dependent estimates of Σb and Cj(λ,φ)
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What do raw ensemble variances look like?

Standard Deviation of Vorticity t+9h 500hPa
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• Noise level is due to sampling errors: 25 member ensemble

• EDA is a stochastic system: error variance of variance estimator    
~ 1/Nens

• We need a system to effectively filter out noise from first guess 
ensemble forecast variances: Reduce the random component of 
the estimation error
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• We can use a spectral filter to disentangle noise from signal

• Truncation wavenumber is determined by maximizing signal-
to-noise ratio of filtered variances (Raynaud et al., 2009; 
Bonavita et al., 2011) 

Hybrid EDA 4DVar
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Raw EDA StDev
Vorticity 500 hPa

Filtered EDA StDev
Vorticity 500 hPa
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StDev of Vorticity at 500 hPa

estimated from climat. B
Random. Method
(Fisher & Courtier, 1995)

Filtered EDA estimate of 
StDev of Vorticity 500 hPa
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Is there also a systematic error in our EDA 
sampled variances?

A statistically consistent ensemble satisfies:

(1-1/Nens)
-1<Ens_Var> = (1+1/Nens)

-1<Ens_Mean_Square_Error>
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Vorticity ml 78 (~850hPa)
Ensemble Error                                                        Ensemble Spread

Spread - Error
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• To get statistically consistent EDA variances we need to perform 
an online calibration (Ensemble Variance Calibration; Kolczynsky
et al., 2009, 2011; Bonavita et al., 2011) 

• Calibration factors are also state-dependent, i.e. depend on the 
size of the expected error

• Need to perform calibration of variances reflects underlying 
problem in Q and R models, system non-linearities, ensemble size
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Use of EDA variances in 4DVar

1. Inside 4DVar EDA derived background error estimates change 
the shape and size of analysis increments

• Tropical Cyclone Aere, Philippines 8-9 May 2011.
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Use of EDA variances in 4DVar

1. Inside 4DVar EDA variances change the shape and size of 
analysis increments

• Significant operational analysis error, corrected by 4DVar with EDA 
variances 
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log(Ps) Static errors           log(Ps) EDA errors         
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Use of EDA variances in 4DVar

Slide 30

• Flow-dependent EDA errors have been used operationally 
since May 2012 (CY37R2)

• The effect of using flow-dependent EDA estimated errors is 
large on average skill scores
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Geopotential RMSE reduction

winter summer
Blue=☺



Slide 32

Massimo Bonavita – DA Training Course 2015 – EDA

Use of EDA covariances in 4DVar

K is the balance operator

Σb is the gridpoint variance of background errors 

Cj(λ,φ) is the vertical correlation matrix for wavelet index j
ψj are the set of radial basis function that define the wavelet transform

Cj(λ,φ) are fields of full vertical correlation matrices, defined for each
wavelet band. They determine both the horizontal and vertical 
background error correlation structures.

In order to get flow-dependent estimates of error 
correlation structures we need 

flow-dependent estimates of Cj(λ,φ).
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The computation of the wavelet B (i.e., the correlations (Cj(λ,φ)) requires 
considerably more EDA perturbations than those available from the latest 

EDA. For this reason they are estimated through a linear combination of a 
climatological wavelet B and perturbations from the latest EDA:

������� = 1 − � ������� + ��������

alpha is currently set at 0.3. 

Flow-dependent wavelet B model
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Error Correlation length-scales for Vorticity, 500 hPa

Static wavelet B

Hybrid wavelet B
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TYPHOON HAIYAN 
MTSAT IR 

2013-11-05 21UTC

Z1000 BG (isolines) 
EDA Vorticity Spread (shaded) 10-5s-1)) 

valid at 2013-11-05 21UTC
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Climatol. Wavelet B Hybrid Wavelet B 

(α=0.3) 

Vorticity errors length scale at the surface (shaded)  

Geopotential height at 1000hPA (isolines)
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“What if we had a 100 member ensemble DA?”

Hybrid B (α=0.3) Hybrid B (α=0.7) 

Vorticity errors length scale at the surface (shaded)  

Geopotential height at 1000hPA (isolines)
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Vertical Error Correlation - Vorticity, 850 

hPa

2012-02-09 21Z

2012-01-09 21Z
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Impact of online wavelet B
Reduction in Geopotential RMSE - 95% confidence

NH SH
50 hPa

100 hPa

200 hPa

500 hPa

1000 hPa

Period: Feb - June 2012

T511L91, 3 Outer Loops 
(T159/T255/T255)

Verified against operational 
analysis
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Outline

• KF, EKF, EnKF

• Hybrid Var-EnKF methods

• The Ensemble of Data Assimilations (EDA) method

• Hybrid Gain Ensemble Data Assimilation
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Hybrid Gain EnDA (Hamrud et al., 2015; Bonavita et al., 2015)

• Based on ideas from Penny (2013)

• Majority of proposed Hybrid DA systems use ensemble to 
construct/augment/blend the B model used in a variational analysis 

update with current ensemble perturbations  

• We have seen that EnKF and 4DVar (with a climatological B) have 
comparable accuracy (at least at ECMWF!)

• We could just as well try blending the complete Kalman Gain 
matrices of the two systems (EnKF and 4DVar) in an EnKF 
framework

Hybrid Gain EnDA
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 Can we improve by blending two analysis system of similar quality 

inside the EnKF framework?

Hybrid Gain EnDA

Hybrid Gain EnDA
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Hybrid Gain EnDA
TL399 100 member EnKF
TL399 4DVar – static B

TL399 100 member Hyb. Gain EnDA

Z500 hPa AC - NHem Z500 hPa AC - SHem
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 Hybrid Gain EnDA works surprisingly well. But why?

Hybrid Gain EnDA

MSLP t+6h fcst and MSLP Ensemble stdev (shaded)
SP obs at (58.5N, 30.3W), middle of window, y-H(x)=-1hPa
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SP obs at (58.5N, 30.3W), middle of window, y-H(x)=-1hPa

EnKF 4DVar

HG-EnDA



Slide 46

Massimo Bonavita – DA Training Course 2015 – EDA

• Traditional view of data assimilation: provide the best (minimum 

variance, most likely) estimate of the initial state plus its uncertainty

(error bars!)

• The Kalman Filter provides the solution to the data assimilation problem 

under mildly restrictive conditions for global NWP: linear model 

evolution over the background forecast length (3-12hours) and linear 

observation operators

• The standard Kalman Filter can not be implemented in large-

dimensional systems (like NWP!) because it is impossible to explicitly 

compute and evolve Pa/Pb

Summary
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• 4D-Var and the EnKF provide two computationally tractable  

approximations to the Kalman Filter

• Standard 4D-Var uses a model of Pb (at ECMWF the wavelet model) and 

does not compute Pa. The modelled Pb (which we call B) evolves during 

the 4D-Var assimilation window but is not cycled: each 4D-Var analysis 

starts with a climatological estimate of Pb

• The EnKF solves the dimensionality problem of the Kalman Filter by 

reducing the space in which Pa/b are computed to the space spanned by 

the ensemble perturbations (Nens-1)

• Both 4D-Var and the EnKF thus introduce further approximations to the 

Kalman Filter

Summary

Slide 47
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• Hybrid DA methods try to combine the strengths of standard 4D-Var and 

the EnKF

• Hybrid DA methods have mostly be implemented as variants on pre-

existing Var DA systems where the B used in the variational analysis is 

supplemented or completely determined by forecast perturbations from 

a parallel EnKF/EnDA system (extended control variable, 4D-En-Var, 

hybrid EDA 4DVar)  

• We have seen that the symmetric approach is also feasible: supplement 

an EnKF-based DA with a variational component (Hybrid Gain EnDA) 

• There does not seem to be any fundamental reasons to favour one 

hybrid over another. Practical considerations should guide your choice 

(computational efficiency, scalability, ease of implementation, etc.)

Summary
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• Traditional view of data assimilation: provide the best (minimum 

variance, most likely) estimate of the initial state plus its uncertainty

(error bars!)

• But if we accept that weather forecasting is a probabilistic exercise, then 

the defining task of data assimilation is to provide the “best” 

representation of the initial pdf of the atmospheric state

• The more this initial pdf differs from a Gaussian distribution, the more 

the Kalman Filter paradigm will need to be revisited and more general 

methods will have to be considered

• In either case, ensemble data assimilation will become ever more 

important as it currently is the only practical method to sample this pdf. 

Summary
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Additional Slides

Slide 53



Slide 54

Massimo Bonavita – DA Training Course 2015 – EDA

In variational analysis the B matrix is usually defined implicitly 
in terms of a transformation from the departure δx in state 
space to a control variable χ:

δx = x-xb = Lχ

where L verifies B=LLT

In the spectral formulation (Derber and Bouttier, 1999), the change 
of variable L has the form:

L = K Bu
1/2 

where K is a balance operator going from the set of “unbalanced “ 
variables [ζ, ηu, (T,ps)u,q] (the “control vector”) to the set of state 
variables [ζ, η,(T,ps),q]

There is a degree of flow-dependence in K as the balance 
constraints are linearised about the first-guess trajectory 

Spectral B model
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δx = x-xb = Lχ L = K Bu
1/2 

Since we assume that the balance operator accounts for all 
inter-variable correlations, Bu is block diagonal 

Each block in Bu is of the form ΣTCΣ.

Σ is the gridpoint standard deviation of background errors. 

C models the autocorrelation of the control variables. It is block 
diagonal with one full vertical correlation matrix for each spectral 
wavenumber, i.e. Cn(NLEV,NLEV) (non-separable B model)

Spectral B model
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Vorticity correl. wavenum=2 Vorticity correl. wavenum=64

Vorticity bg error stdev, 500hPa Vorticity bg error corr. Lscale, 500hPa

C2(NLEV,NLEV) C64(NLEV,NLEV)



Slide 57

Massimo Bonavita – DA Training Course 2015 – EDA

• The spectral B model is one end of the spectrum:  full resolution of 
the variation of vertical correlation with horizontal scale,  but it 
allows no horizontal variability of the vertical/horizontal 
correlations

• The other end of the spectrum is represented by the separable 
formulation which allows full horizontal variation of the 
correlations (we may specify a different vertical covariance matrix 
for each horizontal grid point), but has no variation of vertical 
correlation with horizontal scale

• The wavelet B (Fisher, 2003) is a compromise between these two 
extremes and allows a degree of variation of correlation with both 
wavenumber and horizontal location

From Spectral to Wavelet B model
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• The wavelet B is based on a wavelet expansion on the sphere.

• The basis functions (wavelets) are chosen to be band-limited and, 
to a good approximation, spatially localized

Wavelet B model
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• The correlation matrices Cn[NlevxNlev] are now of the form 

Cj[NlevxNlev](λ,φ), where j is now the index of the wavelet component

• The choice of the wavelet bandwidths [Nj, Nj+1] determines the trade-off 
between spectral and spatial resolution. If the bands are narrow, the 

corresponding wavelet functions are not spatially localized, and vice versa

Wavelet B model

Climat. Spectral B
Vorticity bg error corr. Lscale, 500hPa

Climat. Wavelet B
Vorticity bg error corr. Lscale, 500hPa
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The wavelet B formulation:

can be made flow-dependent by obtaining flow-dependent 
estimates of the background error variances (Σb) and 
correlations (Cj(λ,φ)) from the EDA background perturbations

Flow-dependent wavelet B model

    jj
j

jbb  ,2/12/1 CKΣLχxx  
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Use of EDA variances in 4DVar

2. Before 4DVar they affect the observation quality 
control decisions

• Super Storm Sandy

Slide 61
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What happens if we withhold polar-orbiters observations (i.e., 
approx. 90% of obs. counts)? 

The forecast performance is obviously degraded, and only 5 days 
before landfall the system recovers the correct track

Use of EDA variances in 4DVar

Slide 62

Sandy’s forecast tracks 25 Oct 
2013 00UTC

Operational forecast

Forecast from HRES assimilation 
cycle without polar orbiters and 
errors from operational EDA

Forecast from HRES assimilation 
cycle and EDA both without polar 
orbiters data
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EDA without polar orbiters’ data has larger spread than operational EDA 

EDA spread for u-wind component at 850 hPa: No-Polar/Oper ratio

Use of EDA variances in 4DVar
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EDA without polar orbiters’ data has larger spread than operational EDA 

EDA spread for u-wind component at 850 hPa: No-Polar/Oper ratio

Use of EDA variances in 4DVar
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EDA without polar orbiters’ data has larger spread than operational EDA 

EDA spread for u-wind component at 850 hPa: No-Polar/Oper ratio

Use of EDA variances in 4DVar
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EDA without polar orbiters’ data has larger spread than operational EDA 

This has two effects: a) Observations are more closely fit and b) More 
observations pass first guess quality control: (y-H(x))2 ≤ α(σb

2+ σo
2)

Use of EDA variances in 4DVar
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In this case more AMVs from 
geostationary satellites are 
assimilated
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In this case more AMVs 
from geostationary 
satellites are assimilated
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