
An Introduction to MPI Programming

Paul Burton

April 2015

An Introduction to MPI Programming

 Introduction

 Initialising MPI & basic concepts

 Compiling and running a parallel program on the Cray

 Practical : “Hello World” MPI program

 Synchronisation

 Practical

 Data types and tags

 Basic sends and receives

 Practical

 Collective communications

 Reduction Operations

 MPI References

An Introduction to MPI Programming

Topics

 Message Passing evolved in the late 1980’s

 Cray was dominate in supercomputing

- with very expensive shared-memory vector processors

 Many companies tried new approaches to HPC

 Workstation and PC Technology was spreading rapidly

 “The Attack of the Killer Micros”

 Message Passing was a way to link them together

- many different flavours PVM, PARMACS, CHIMP, OCCAM

 Cray recognised the need to change

- switched to MPP using cheap DEC Alpha microprocessors

(T3D/T3E)

 But application developers needed portable software

An Introduction to MPI Programming

Introduction (1 of 4)

 Message Passing Interface (MPI)

- The MPI Forum was a combination of end users and vendors (1992)

- defined a standard set of library calls in 1994

- Portable across different computer platforms

- Fortran and C Interfaces

 Used by multiple tasks to send and receive data

- Working together to solve a problem

- Data is decomposed (split) into multiple parts

- Each task handles a separate part on its own processor

- Message passing to resolve data dependencies

 Works within a node and across Distributed Memory
Nodes

 Can scale to thousands of processors

- Subject to constraints of Amdahl’s Law

An Introduction to MPI Programming

Introduction (2 of 4)

 The MPI standard is large

- Well over 100 routines in MPI version 1

- Result of trying to cater for many different flavours of message
passing and a diverse range of computer architectures

- And an additional 100+ in MPI version 2 (1997)

 Many sophisticated features

- Designed for both homogenous and heterogeneous
environments

 But most people only use a small subset

- IFS was initially parallelised using Parmacs

- This was replaced by about 10 MPI routines

 Hidden within “MPL” library

An Introduction to MPI Programming

Introduction (3 of 4)

 This course will look at just a few basic routines

- Fortran Interface Only

- MPI version 1.2

- SPMD (Single Program Multiple Data)

- As used at ECMWF in IFS

 A mass of useful material on the Web

- Google is your friend!

An Introduction to MPI Programming

Introduction (4 of 4)

 The SPMD model is by far the most common

- Single Program Multiple Data

- One program executes multiple times simultaneously

- The problem is divided across the multiple copies

- Each work on a subset of the data

 MPMD

- Multi Program Multiple Data

- Different executable on different processors

- Useful for coupled models for example

- Part of the MPI 2 standard

- Not currently used by IFS

- Can be mimicked in SPMD mode

 Top level branch deciding which “program” (subroutine) this

task will run
An Introduction to MPI Programming

SPMD

 Task

- one running instance (copy) of a program

- Equivalent to a UNIX process

- Basic unit of an MPI parallel execution

- May run on one processor

 Or across many if OpenMP is used as well

 Or many tasks on one processor (not a good idea!)

 Master

- the master task is the first task in a parallel program : TaskID=0

 Slave

- all other tasks in a parallel program

- Nothing intrinsically different between master/slave – but the

parallel program may treat them differently

An Introduction to MPI Programming

Some definitions

 Lets start with “hello world”

 Introduces

- 4 essential housekeeping routines

- the “use mpi” statement

- the concept of Communicators

An Introduction to MPI Programming

The simplest MPI program..........

program hello

implicit none

print *,"Hello world"

end

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 The MPI header file

 Always include in any routine calling an MPI function

 Contains declarations for constants used by MPI

 May contain interface blocks, so compiler will tell you if
you make an obvious error in arguments to MPI library

- This is not mandated by the standard so you shouldn’t rely on it.

You may want to test Cray’s mpi to see if it does!

 In Fortran77 use include ‘mpif.h’ instead

An Introduction to MPI Programming

use mpi : The MPI header file

use mpi

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 Initializes the MPI environment

 Expect a return code of zero for ierror

- If an error occurs the MPI layer will normally abort the job

- best practise would check for non zero codes

- we will ignore for clarity – but see later slides for MPI_ABORT

 On the Cray all tasks execute the code before MPI_INIT

- this is an implementation dependent feature

- try not to do anything that alters the state of the system before
this, eg. I/O

An Introduction to MPI Programming

MPI_INIT

integer:: ierror

call MPI_INIT(ierror)

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 An MPI communicator

 Constant integer value from “use mpi”

 Communicators define sets or groups of tasks

- dividing programs into subsets of tasks often not necessary

- IFS also creates and uses some additional communicators

 useful when doing collective communications

 Useful if you want to dedicate a subset of tasks to a special

job (eg. I/O server)

- advanced topic

 MPI_COMM_WORLD means all tasks

- many MPI programs only use MPI_COMM_WORLD

- All our examples only use MPI_COMM_WORLD

 An Introduction to MPI Programming

MPI_COMM_WORLD

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 Returns the number of parallel tasks in the variable
“ntasks”

- the number of tasks is defined from the aprun command which

starts the parallel executable

 Value can be used to help decompose the problem

- in conjunction with Fortran allocatable/automatic arrays

- avoid the need to recompile for different processor numbers

An Introduction to MPI Programming

MPI_COMM_SIZE

integer:: ierror,ntasks

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 Returns the rank of the task in mytask

- In the range 0 to ntasks-1

 Easy to make mistakes with this as Fortran arrays normally

run 1:n

- Used as a task identifier when sending/receiving messages

An Introduction to MPI Programming

MPI_COMM_RANK

integer:: ierror, mytask

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

Hello World with MPI

An Introduction to MPI Programming

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

 Tell the MPI layer that we have finished

 Any MPI call after this is an error

- Like MPI_INIT, the MPI standard does not mandate what happens

after an MPI_FINALIZE – cannot guarantee that all tasks still

execute after this point

 Does not stop the program – at least one (probably all!)
tasks will continue to run

An Introduction to MPI Programming

MPI_FINALIZE

integer:: ierror

call MPI_FINALIZE(ierror)

 Causes all tasks to abort

 Even if only one task makes call

An Introduction to MPI Programming

MPI_ABORT

integer:: ierror

call MPI_ABORT(MPI_COMM_WORLD,ierror)

 Many varied ways of defining your requirements

 For the exercises we’ll keep it as simple as possible

- Create an interactive shell in which you can run parallel jobs in

up to one node (48 hyperthreaded CPUs)

- You won’t need to wait every time you run an executable!

- Don’t forget to log out when you’re finished!

- Not recommended for regular use!

An Introduction to MPI Programming

PBSPro and MPI

$ ssh cca # or ccb

$ qsub -q np -I -l EC_nodes=1 –l EC_hyperthreads=2

queue “np”

interactive

one node

Use hyperthreading

 Very easy using modules

- Automatically adds all the flags/libraries required for MPI

An Introduction to MPI Programming

Compiling an MPI Program

$ module load PrgEnv-cray # Use Cray compilers

$ module load PrgEnv-intel # Use Intel compilers

$ module load PrgEnv-gnu # Use Gnu compilers

$ ftn hello.f90 # produces a.out

$ ftn -c hello.f90 # produces hello.o

$ ftn hello.o -o hello.exe # produces hello.exe

or

or

or

and

 aprun

- Details and many options covered in other lectures

- Here we will use a very simple form

- Run from the MOM node, launches the parallel executable on the

parallel (ESM) node(s)

An Introduction to MPI Programming

Running an MPI Program

$ aprun –n 4 <executable>

 Copy all the practical exercises to your account on cca
or ccb:

- cd $HOME

- mkdir mpi_course ; cd mpi_course

- cp –r ~trx/mpi.2015/* .

 Exercise1a

- Run your own Hello World program with MPI

 See the README for details

An Introduction to MPI Programming

First Practical

 Forces all tasks (in a communicator group) to
synchronise

- for timing points

- to improve output of prints

 can be used to force ordering of events

- to separate different communications phases

 A task waits in the barrier until all tasks reach it

 Then every task completes the call together

 Deadlock if one task does not reach the barrier

- MPI_BARRIER will wait until the task reaches its cpu limit

An Introduction to MPI Programming

MPI_BARRIER

integer:: ierror

call MPI_BARRIER(MPI_COMM_WORLD,ierror)

MPI_BARRIER

An Introduction to MPI Programming

P0 P1 P2 P3

MPI_BARRIER

An Introduction to MPI Programming

P0 P1 P2 P3 P0 P1 P2 P3

IDRIS-CNRS

MPI_BARRIER

An Introduction to MPI Programming

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

IDRIS-CNRS

 Forcing the ordering of output

 Exercise 1b – see the README file for more details…

An Introduction to MPI Programming

Second Practical

 MPI_SEND

- sends a message from one task to another

 MPI_RECV

- receives a message from another task

 A message is just data with some form of identification

- think of it as an email – some information and some headers

 To: Where the message should be sent to

 Subject: Some description of the contents (in MPI, a “tag”)

 Body: The data itself (can be any size), various Fortran types

 You program the logic to send and receive messages

- the sender and receiver are working together

- every send must have a corresponding receive

An Introduction to MPI Programming

Basic Sends and Receives

 MPI can send variables of any Fortran type

- integer, real, real*8, logical,

- it needs to know the type

 There are predefined constants used to identify types

- MPI_INTEGER, MPI_REAL, MPI_REAL8, MPI_LOGICAL.......

- Defined by “use mpi”

 Also user defined data types

- MPI allows you create types created out of basic Fortran types

(rather like a Fortran 90 structure)

- Allows strided (non contiguous) data to be communicated

- advanced topic

An Introduction to MPI Programming

MPI Datatypes

 All messages are given an integer TAG value

- standard says maximum value is at least 32768 (2^31)

- CALL MPI_Comm_get_attr (MPI_COMM_WORLD,MPI_TAG_UB,

 maxtag, flag, error)

 This helps to identify a message (like an email’s
“subject”)

 Particularly useful when sending multiple messages

 You decide what tag values to use

- Good ideas to use separate ranges of tags eg:

 1000, 1001, 1002..... in routine a

 2000, 2001, 2002.... in routine b

An Introduction to MPI Programming

MPI Tags

 SBUF the array being sent input

 COUNT the number of elements to send input

 MPI_TYPE type of SBUF eg MPI_REAL input

 DEST the task id of the receiver input

 TAG the message identifier input

An Introduction to MPI Programming

MPI_SEND

FORTRAN_TYPE:: sbuf

integer:: count, dest, tag, ierror

call MPI_SEND(sbuf, count, MPI_TYPE, dest, tag, &

 MPI_COMM_WORLD, ierror)

 RBUF the array being received output

 COUNT the length of RBUF input

 MPI_TYPE type of RBUF eg MPI_REAL input

 SOURCE the task id of the sender input

 TAG the message identifier input

 STATUS information about the message output

An Introduction to MPI Programming

MPI_RECV

FORTRAN_TYPE:: rbuf

integer:: count, source, tag, status(MPI_STATUS_SIZE),ierror

call MPI_RECV(rbuf, count, MPI_TYPE, source, tag, &

 MPI_COMM_WORLD, status, ierror)

 MPI_RECV will block (wait) until the message arrives

- if message never sent then deadlock

 task will wait until it reaches cpu time limit, and then dies

 Order in which messages are received

- For a given pair of processors using the same communicator, the

MPI standard guarantees the messages will be received in the

same order they were sent

 This means you need to be careful

- If you are receiving multiple messages from the same task, you
MUST do the MPI_RECVs in the same order as the MPI_SENDs

- Otherwise the first MPI_RECV will wait forever, and eventually die

- What happens if you don’t know the ordering of the MPI_SENDs?

An Introduction to MPI Programming

More on MPI_RECV

 The source and tag can be more open

- MPI_ANY_SOURCE means receive from any sender

- MPI_ANY_TAG means receive any tag

- Useful in more complex communication patterns

- Used to receive messages in a more random order

- helps smooth out load imbalance

- May require over-allocation of receive buffer

 But how do we know what message we’ve received?

- status(MPI_SOURCE) will contain the actual sender

- status(MPI_TAG) will contain the actual tag

An Introduction to MPI Programming 38

How to be less specific on MPI_RECV

A simple example

An Introduction to MPI Programming

subroutine transfer(values,len,mytask)

implicit none

use mpi

integer:: mytask,len,source,dest,tag,ierror,status(MPI_STATUS_SIZE)

real:: values(len)

tag = 12345

if(mytask.eq.0) then

 dest = 1

 call MPI_SEND(values,len,MPI_REAL,dest,tag,MPI_COMM_WORLD,ierror)

elseif(mytask.eq.1) then

 source = 0

 call MPI_RECV(values,len,MPI_REAL,source,tag,MPI_COMM_WORLD,status,ierror)

endif

end

 Sending and receiving a message

 Exercise 1c – see the README file for more details…

An Introduction to MPI Programming

Third Practical

 SEND/RECV is pairwise communication

 Often we want to do more complex communication
patterns

 For example

- Send the same message from one task to many other tasks

- Receive messages from many tasks onto many other tasks

 We could write this with MPI_SEND & MPI_RECV

- How?

- Why not?

An Introduction to MPI Programming

Collective Communications (1)

 MPI contains Collective Communications routines

- called by all tasks (in a comminicator group) together

- replace multiple send/recv calls

- easier to code and understand

- can be more efficient

- the MPI library may optimise the data transfers

 We will look at MPI_BCAST and MPI_GATHER

 Other routines will be summarised

 The diagrams are schematic

- Help to conceptualise the data movement

- The MPI library and machine hardware may actually be doing a

more complex (and hopefully efficient!) communication pattern

 IFS uses a few collective routines, sometimes we hand
code our own

An Introduction to MPI Programming

Collective Communications

 ROOT task doing broadcast input

 BUFF array being broadcast input/output

 COUNT the number of elements input

 MPI_TYPE the kind of variable input

 The contents of buff are sent from task id root to all
other tasks. Equivalent to putting MPI_SEND in a loop
and matching MPI_RECVs

An Introduction to MPI Programming

MPI_BCAST

FORTRAN_TYPE:: buff

integer:: count, root, ierror

call MPI_BCAST(buff,count,MPI_TYPE,root,MPI_COMM_WORLD,ierror)

An Introduction to MPI Programming

MPI_BCAST

IDRIS-CNRS

An Introduction to MPI Programming

MPI_BCAST

IDRIS-CNRS

An Introduction to MPI Programming

MPI_BCAST

IDRIS-CNRS

An Introduction to MPI Programming

MPI_BCAST

IDRIS-CNRS

An Introduction to MPI Programming

MPI_BCAST

IDRIS-CNRS

 ROOT task doing gather input

 SBUFF array being sent input

 RBUFF array being received output

 [S/R]COUNT number of items to/from input

 each task

 The contents of sbuff are sent from every task to task id
root and received (concatenated in rank order) in array
rbuff. Could also be done by putting MPI_RECV in a

loop.
An Introduction to MPI Programming

MPI_GATHER

FORTRAN_TYPE:: sbuff, rbuff

integer:: count, root, ierror

call MPI_GATHER(sbuff,scount,MPI_TYPE, &

 rbuff,rcount,MPI_TYPE,root,MPI_COMM_WORLD,ierror)

An Introduction to MPI Programming

MPI_GATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_GATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_GATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_GATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_GATHER

IDRIS-CNRS

 MPI_ALLGATHER

- gather arrays of equal length into one array on all tasks

- Simpler and more efficient than doing MPI_GATHER followed by

MPI_BCAST

 MPI_GATHERV

- gather arrays of different lengths into one array on one task

 MPI_ALLGATHERV

- gather arrays of different lengths into one array on all tasks

 Where do you think these may be useful?

An Introduction to MPI Programming

Gather Routines

An Introduction to MPI Programming

MPI_ALLGATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLGATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLGATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLGATHER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLGATHER

IDRIS-CNRS

 MPI_SCATTER

- divide one array on one task equally amongst all tasks

- each task receives the same amount of data

 MPI_SCATTERV

- divide one array on one task unequally amongst all tasks

- each task can receive a different amount of data

 Where do you think they might be useful?

An Introduction to MPI Programming

Scatter Routines

 ROOT task doing scatter input

 SBUFF array being sent input

 RBUFF array being received output

 [S/R]COUNT number of items to/from input

 each task

 The contents of sbuff on task id root are equally split
and each task receives its part in array rbuff. Could
also be done by putting MPI_SEND in a loop.

An Introduction to MPI Programming

MPI_SCATTER

FORTRAN_TYPE:: sbuff, rbuff

integer:: count, root, ierror

call MPI_SCATTER(sbuff,scount,MPI_TYPE, &

 rbuff,rcount,MPI_TYPE,root,MPI_COMM_WORLD,ierror)

An Introduction to MPI Programming

MPI_SCATTER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_SCATTER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_SCATTER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_SCATTER

IDRIS-CNRS

An Introduction to MPI Programming

MPI_SCATTER

IDRIS-CNRS

 MPI_ALLTOALL

- every task sends equal length parts of an array to all other tasks

- every task receives equal parts from all other tasks

- transpose of data over the tasks

 MPI_ALLTOALLV

- as above but parts are different lengths

An Introduction to MPI Programming

All to All Routines

 SBUFF array being sent input

 RBUFF array being received output

 [S/R]COUNT number of items to/from input

 each task

 The contents of sbuff on each task are equally split and
each task receives an equal part into array rbuff. Could
also be done by putting MPI_SEND/MPI_RECV in a loop.

An Introduction to MPI Programming

MPI_ALLTOALL

FORTRAN_TYPE:: sbuff, rbuff

integer:: count, root, ierror

call MPI_SCATTER(sbuff,scount,MPI_TYPE, &

 rbuff,rcount,MPI_TYPE,MPI_COMM_WORLD,ierror)

An Introduction to MPI Programming

MPI_ALLTOALL

IDRIS-CNS

An Introduction to MPI Programming

MPI_ALLTOALL

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLTOALL

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLTOALL

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLTOALL

IDRIS-CNRS

 Perform both communications and simple math

- Global sum, min, max,

 Beware reproducibility

- MPI makes no guarantee of reproducibility

 Eg. Summing an array of real numbers from each task

 May be summed in a different order each time

- You may need to write your own order preserving summation if

reproducibility is important to you.

 MPI_REDUCE

- every task sends data and result is computed on the “root” task

 MPI_ALLREDUCE

- every task sends, result is computed and broadcast back to all
tasks. Equivalent to MPI_REDUCE followed by MPI_BCAST

An Introduction to MPI Programming

Reduction routines

 SBUFF array to be reduced input

 RBUFF result of reduction output

 COUNT number of items to be input

 reduced

 The contents of sbuff from all tasks are reduced according
to OP_TYPE and the result is sent to RBUFF task root.
OP_TYPE can be MPI_MAX, MPI_MIN, MPI_SUM, MPI_IPROD,
MPI_IAND, MPI_BAND, MPI_IOR, MPI_BOR, MPI_LXOR,

MPI_BXOR, MPI_MAXLOC, MPI_MINLOC

An Introduction to MPI Programming

MPI_REDUCE

FORTRAN_TYPE:: sbuff, rbuff

integer:: count, root, ierror

call MPI_REDUCE(sbuff,rbuff,count,MPI_TYPE,OP_TYPE, &

 root,MPI_COMM_WORLD,ierror)

An Introduction to MPI Programming

MPI_REDUCE

IDRIS-CNRS

An Introduction to MPI Programming

MPI_ALLREDUCE

IDRIS-CNRS

 Using MPI (2nd edition) by William Gropp, Ewing Lusk and Anthony
Skjellum; Copyright 1999 MIT; MIT Press ISBN 0-262-57132-3

 The Message Passing Interface Standard on the web at

 http://www.mpi-forum.org/docs/

An Introduction to MPI Programming

MPI References

