
C O M P U T E | S T O R E | A N A L Y Z E

Programming Environment

4/11/2015
1

C O M P U T E | S T O R E | A N A L Y Z E

Vision

Sli
de
2

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:

● the highest levels of application performance
● a rich variety of commonly used tools and libraries
● a consistent interface to multiple compilers and libraries
● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users
● Strong collaborations with third-party developers

C O M P U T E | S T O R E | A N A L Y Z E

Cray Software Ecosystem

CrayPAT

Cray Apprentice2

Cray Iterative

Refinement Toolkit

Cray PETSc, CASK

DVS

GNU

Reveal

Cray Linux

Environment

C O M P U T E | S T O R E | A N A L Y Z E

Cray’s Supported Programming Environment

4

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.1

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

C O M P U T E | S T O R E | A N A L Y Z E

The Cray Compilation Environment (CCE)

5

● The default compiler on XE and XC systems
● Specifically designed for HPC applications
● Takes advantage of Cray’s experience with automatic vectorization and

and shared memory parallelization

● Excellent standards support for multiple languages and
programming models
● Fortran 2008 standards compliant
● C++98/2003 compliant (working on C++11)
● OpenMP 3.1 compliant, working on OpenMP 4.0
● OpenACC 2.0 compliant

● Full integrated and optimised support for PGAS languages

● UPC 1.2 and Fortran 2008 coarray support
● No preprocessor involved
● Full debugger support (With Allinea DDT)

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

C O M P U T E | S T O R E | A N A L Y Z E

Cray MPI & SHMEM

6

● Cray MPI
● Implementation based on MPICH3 source from ANL

● Includes many improved algorithms and tweaks for Cray hardware
● Improved algorithms for many collectives

● Asynchronous progress engine allows overlap of computation and comms

● Customizable collective buffering when using MPI-IO

● Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

● Full MPI-3 support with the exception of
● Dynamic process management (eg. MPI_Comm_spawn)

● MPI_LONG_DOUBLE and MPI_C_LONG_DOUBLE_COMPLEX for CCE

● Includes support for Fortran 2008 bindings (from CCE 8.3.3)

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Fully compliant with OpenSHMEM v1.0

● Cray XC implementation close to the T3E model

C O M P U T E | S T O R E | A N A L Y Z E

Cray Scientific Libraries

7

FFT

FFTW

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CASE – Cray Adaptive Simplified Eigensolver

C O M P U T E | S T O R E | A N A L Y Z E

Cray Performance Analysis Tools (PAT)

8

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

C O M P U T E | S T O R E | A N A L Y Z E

Debuggers on Cray Systems

9

● Systems with hundreds of thousands of threads of
execution need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● running at 216K back-end processes

● ATP - Abnormal Termination Processing
● Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging

● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanism
● TotalView, DDT, and gdb

C O M P U T E | S T O R E | A N A L Y Z E

Controlling the environment with
modules

C O M P U T E | S T O R E | A N A L Y Z E

Modules

● The Cray Programming Environment uses the GNU
“modules” framework to support multiple software
versions and to create integrated software packages

● As new versions of the supported software and
associated man pages become available, they are
installed and added to the Programming Environment as a
new version, while earlier versions are retained to support
legacy applications

● System administrators will set the default version of an
application, or you can choose another version by using
modules system commands

● Users can create their own modules, or administrators can
install site specific modules available to many users

C O M P U T E | S T O R E | A N A L Y Z E

Viewing the current module state

● Each login session has its own module state which can be
modified by loading, swapping or unloading the available
modules

● This state affects the functioning of the compiler wrappers
and in some cases runtime of applications

● A standard, default set of modules is always loaded at
login for all users

● Current state can be viewed by running:

$> module list

C O M P U T E | S T O R E | A N A L Y Z E

Default modules example

ccb-login2:crayhr$ module list
Currently Loaded Modulefiles:
 1) modules/3.2.6.7
 2) eswrap/1.1.0-1.020200.1130.0
 3) switch/1.0-1.0502.50885.3.4.ari
 4) craype-network-aries
 5) craype/2.1.1
 6) cce/8.2.7
 7) cray-libsci/12.2.0
 8) udreg/2.3.2-1.0502.8413.2.9.ari
 9) ugni/5.0-1.0502.8670.4.22.ari
 10) pmi/5.0.3-1.0000.9981.128.2.ari
 11) dmapp/7.0.1-1.0502.8638.9.93.ari
 12) gni-headers/3.0-1.0502.8554.6.6.ari
 13) xpmem/0.1-2.0502.50559.4.2.ari
 14) job/1.5.5-0.1_2.0502.49000.2.39.ari
 15) csa/3.0.0-1_2.0502.49605.4.45.ari
 16) dvs/2.4_0.9.0-1.0502.1696.2.39.ari
 17) alps/5.2.0-2.0502.8594.12.4.ari
 18) rca/1.0.0-2.0502.49765.5.41.ari
 19) atp/1.7.2
 20) PrgEnv-cray/5.2.14
 21) pbs/12.2.401.141761
 22) craype-ivybridge
 23) cray-mpich/6.3.1

C O M P U T E | S T O R E | A N A L Y Z E

Viewing available modules

● There may be many hundreds of possible modules
available to users
● Beyond the pre-loaded defaults there are many additional packages

provided by Cray

● Sites may choose to install their own versions

● Users can see all the modules that can be loaded using
the command:
● module avail

● Searches can be narrowed by passing the first few
characters of the desired module, e.g.

ccb-login2:crayhr$ module avail gcc

------------------------------- /opt/modulefiles ----------------------------

gcc/4.8.0 gcc/4.8.1 gcc/4.8.2(default) gcc/4.9.0

C O M P U T E | S T O R E | A N A L Y Z E

Further refining available modules

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules

● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>

● List all <product> versions available

C O M P U T E | S T O R E | A N A L Y Z E

module commands and standard output

● Be aware that module commands output to standard error

● This makes it tricky to search the (voluminous) module
avail output

● csh/tcsh

 module avail >& mavail.txt ; grep netcdf mavail.txt
 (module avail >/dev/null) |& grep netcdf

● ksh

 module avail 2> mavail.txt ; grep netcdf mavail.txt
 module avail 2>&1 | grep netcdf

C O M P U T E | S T O R E | A N A L Y Z E

Modifying the default environment

● Loading, swapping or unloading modules:
● The default version of any inidividual module can be loaded by name

● e.g.: module load perftools

● A specific version can be specified after the forward slash
● e.g.: module load perftools/6.1.0

● Modules can be swapped out in place
● e.g.: module swap intel intel/13.1.1.163

● Or removed entirely
● e.g.: module unload perftools

● Modules will automatically change values of variables like
PATH, MANPATH, LM_LICENSE_FILE... etc
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts

C O M P U T E | S T O R E | A N A L Y Z E

Tips for modules

● Put module list in job scripts
● This gives you a record of job context weeks or years

later

● If you want to test for the programming environment
● Test the PE_ENV environment variable

(but there are no guarantees this won‘t change on eday)

● Use the module information to find documentation
● % module load intel
● % module show intel

(look at output for interesting envars)
● % ls $INTEL_PATH

bin/ Documentation/ ipp/ mpirt/ tbb/
uninstall.sh*
compiler/ eclipse_support/ man/ pkg_bin@ uninstall/
debugger/ foldermap.sc.xml mkl/ Samples/
uninstall_GUI.sh*

C O M P U T E | S T O R E | A N A L Y Z E

Summary of useful module commands

● Which modules are available?
● module avail, module avail cce

● Which modules are currently loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.3.4 cce/8.3.7

● Unload module
● module unload cce

● Display module release notes
● module help cce

● Show summary of module environment changes
● module show cce

C O M P U T E | S T O R E | A N A L Y Z E

Compiling Applications for Cray XC

4/11/2015
20

C O M P U T E | S T O R E | A N A L Y Z E

Compiler driver wrappers

● All applications that will run in parallel on the Cray XC
should be compiled with the standard language wrappers

● The compiler drivers for each language are:

● cc – wrapper around the C compiler

● CC – wrapper around the C++ compiler

● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler version,
target architecture options, scientific libraries and their
include files automatically from the module environment.

● Use them exactly like you would the original compiler, e.g.
To compile prog1.f90 run

 ftn -c prog1.f90

C O M P U T E | S T O R E | A N A L Y Z E

Compiler driver wrappers

● The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.
● module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login
● This may differ on other Cray systems
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich)
● To support SHMEM load the cray-shmem module

● To compile a pure SHMEM code, unload the cray-mpich module

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

C O M P U T E | S T O R E | A N A L Y Z E

Compiler versions

● There are usually multiple versions of each compiler
available to users.
● The most recent version is usually the default and will be loaded when

swapping PrgEnvs.

● To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce/8.3.4 cce/8.3.7

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

C O M P U T E | S T O R E | A N A L Y Z E

About the –I, –L and –l flags

● For libraries and include files covered by module files, you
should not add anything to your Makefile

● No additional MPI flags are needed (included by wrappers)

● You do not need to add any -I, -l or –L flags for the Cray provided
libraries

● If your Makefile needs an input for –L to work correctly, try
using ‘.’

● If you really need a specific path, try checking ‘module
show X’ for some environment variables

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP

● OpenMP is supported by all of the PrgEnvs
● CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by

default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with –hnoomp.

PrgEnv Enable OpenMP Disable OpenMP

PrgEnv-cray (-homp) -hnoomp

PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

C O M P U T E | S T O R E | A N A L Y Z E

Compiler man pages

● For more information on individual compilers

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray

● -dumpversion option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

Wrappers man cc man CC man ftn

