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Outline
•  Introduction

– Why do forecast go wrong?
– Observations, model, “chaos”

•  The ECMWF ensemble
– How does the ENS represent uncertainties?
– Configuration of the ENS

•  ENS products 
– Very short overview – much more in rest of 

course
•  Use of ENS 

– Probabilities and decision support
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Why are forecasts sometimes 
wrong?

•  Initial condition uncertainties
–  Lack of observations
–  Observation error
–  Errors in the data assimilation

•  Model uncertainties 
–  Limited resolution
–  Parameterisation of physical processes

•  The atmosphere is chaotic
–  small uncertainties grow to large errors (unstable flow) 
–  small scale errors will affect the large scale (non-linear dynamics)
–  error-growth is flow dependant

•  Even very good analyses and forecast 
models are prone to errors
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Chaos - the Lorenz attractor

Tim Palmer, Oxford University 
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Flow dependence of forecast errors

If the forecasts are coherent (small spread) the atmosphere is in a more 

predictable state than if the forecasts diverge (large spread) 
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What is an ensemble?
•  A set of forecasts run from slightly different initial 

conditions to account for initial uncertainties
–  At ECMWF perturbations are generated using 

singular vectors  and an ensemble of data 
assimilations

•  The forecast model also contains approximations 
that can affect the forecast evolution
–  Model uncertainties are represented using 

“stochastic physics”
•  The ensemble of forecasts provides a range of 

future scenarios consistent with our knowledge 
of the initial state and model capability
–  Provides explicit indication of uncertainty in today’s 

forecast
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Initial uncertainties
•  Combination of 2 types of perturbations
•  Ensemble of data assimilations (EDA)

Ø  Randomly perturbed observations and SST fields
Ø  Run 25 independent data assimilation cycles

•  Singular vectors: perturbations that grow quickly over 
the first 48 hours of the forecast

•  Best approach given limited available computer 
resources

4DVAR	
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Ensemble of data assimilations 
(EDA)

•  EDA (initial EPS perturbations since June 2010)
–  Control + 25 ensemble members using 4D-Var 

assimilations
–  T399 outer loop
–  T95/T159 inner loop (reduced number of iterations)
–  Model error: Stochastically Perturbed 

Parametrization Tendencies
–  Randomly perturbed observations and SST fields

•  EDA perturbations are not sufficient by 
themselves
–  Additional initial perturbations based on “singular 

vectors”
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Initial uncertainties – singular 
vectors

•  The number of ensemble members is limited 
by available computer resources. How can 
we produce suitable perturbations?

•  Look for perturbations that will grow fastest
•  Singular vectors: perturbations that produce 

the greatest (linear) difference (total energy) 
over a fixed time interval (48 hours)
–  Uses the same tangent-linear and adjoint 

models as used for the 4D-Var analysis
•  50 perturbations generated by random 

(Gaussian) sampling from 50 singular 
vectors. Amplitude tuned to match error
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Initial uncertainties – singular 
vectors

•  Resolution: T42L62; optimisation interval: 48 h
•  Extra-tropics

–  50 SVs for N.-Hem. (30–90N) + 50 for S.-Hem.(30–90S).
–  Simple tangent-linear model (vert. diffusion and surf. 

friction only)
–  perturbations generated by random (Gaussian) sampling 

from 50 singular vectors. Amplitude tuned to match error
–  Perturbations from ensemble of data assimilations also 

used
•  Tropical cyclones: 

–  Up to 6 areas centred on existing tropical cyclones
–  5 singular vectors per area, Gaussian (random) sampling
–  “moist SVs” – TL includes diabatic processes (large-scale 

condensation, convection, radiation, gravity-wave drag, 
vert. diff. and surface friction)

02/02/15 10



Example of initial perturbations
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ENS initial perturbations
•  SV- and EDA-based perturbations have different 

characteristics:
–  EDA-based perturbations are less localized than SV-based 

perturbations and have a smaller scale. They have a larger 
amplitude over the tropics. EDA-perturbations are more barotropic 
than SV-based perturbations, and grow less rapidly. 

–  At initial time, SV-based perturbations have a larger amplitude in 
potential than kinetic energy, while EDA-based perturbations have 
a similar amplitude in potential and kinetic energy

•  Since June 2010 SV- and EDA-based perturbations are used 
together to construct the initial perturbations for the EPS

•  The perturbations are constructed so that all perturbed 
members are equally likely

•  All perturbations are flow-dependent: they are different from day 
to day
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The ensemble spread is flow-dependent but noisy. A filter is applied to remove 
it. This plot shows the EDA std in terms of vorticity at 500 hPa, +9h after 

filtering. 

Ensembles	
  of	
  Data	
  Assimila0on	
  (EDA)	
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Model uncertainties – stochastic 
physics

•  Parametrization – represent effects of unresolved (or partly 
resolved) processes on the resolved model state

•  Statistical ensemble of sub-grid scale processes within a grid 
box; in equilibrium with grid-box mean flow

•  Stochastic physics represents statistical uncertainty
–  allows for energy transfer from sub-grid scale to resolved flow, non-

local effects
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Stochastically Perturbed Parametrization Tendencies 
(SPPT)

Buizza et al 1999 

ΔXp= ( 1+rX) ΔXc 

Revised scheme (35r3) 

ΔXp= ( 1+µr) ΔXc 

Random numbers rX constant in 10o 

by 10o lat/lon boxes, and for 6 model 
time steps (3h in T399) 

Random pattern r based on multiple 
independent AR(1) processes in 
spectral space, with de-correlation 
scales 500 km and 6 h 

Uniform distribution between  −0.5 
and +0.5 

Gaussian distribution with stdev 0.5 
(limited to ±3stdev) 

Independent random numbers rX for 
X=T, q, u, v 

Same random number r  

for X=T, q, u, v 

Perturbations in entire column No perturbations in lowest 300 m and 
above 50 hPa (0≤ µ ≤1) 
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Model uncertainties – stochastic 
physics

•  Stochastically Perturbed Parametrization Tendencies 
(SPPT)
–  Random pattern of perturbation to model fields
–  Initial scheme introduced 1999, revised 2009 (cycle 35r3)

•  Spectral stochastic backscatter scheme (SPBS)
–  A fraction of the dissipated energy is backscattered upscale 

and acts as streamfunction forcing for the resolved-scale flow
–  Introduced in addition to SPPT in November 2010 (cycle 36r4)
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ECMWF medium-range 
forecasts

•  High-resolution forecast (16 km grid, 137 
levels) runs twice every day to 10 days

•  Ensemble: same model but run at lower 
resolution (32 km, 91 levels; 64 km after 
day 10)
–  ensemble control (run from high-resolution 

analysis, no perturbation)
–  50 perturbed members (account for initial 

and model uncertainties)
– Ensemble coupled to ocean model from 

start of forecast
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The ECMWF ensemble
•  91 levels, 32km (T639) to day 10, then 65km 

(T319) to day 15

•  1 control + 50 perturbed members

•  Runs twice per day (00 and 12)

•  Coupled to ocean model from start of forecast

•  Extended to 32 days twice per week for monthly 
forecast (00 Thursday, Monday)
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Model grids: 
 HRES (16km, T1279)           ENS (32 km, T639)
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Ensemble at variable resolution 
•  Small-scale features of the forecasts are 

wrong after a few days, so it makes sense to 
start the forecast at high resolution and then 
to decrease resolution 

•  For a given amount of computing resource, 
this allows to have higher resolution at the 
beginning, which makes the forecast better

•  The additional skill can extend into the lower 
resolution segment (for some parameters, 
not all)

•  Run ENS to day 10 at 32km resolution, then 
extend to day 15 at lower resolution (65km)
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ENS
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ENS
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Day	
  8,	
  green	
  =	
  HRES,	
  black=ENS	
  Mean	
  

HRES	
  shows	
  lows	
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Ensemble mean and spread
•  The ensemble mean is the average over all ensemble members

•  It will smooth the flow more in areas of large uncertainty (spread)

•  This cannot be achieved with a simple filtering of a single forecast

•  the ensemble mean is the best estimate for any parameter beyond 
D+3/D+4 (Z500, T2m, Precipitation)

•  If there is large spread, the ensemble mean can be a rather weak 
pattern and may not represent any of the possible states

•  The ensemble mean should always be used together with the 
spread
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Ensemble skill Z500 Europe
Day	
  3	
  

Day	
  5	
  

Day	
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HRES	
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  forecast	
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  except	
  for	
  a	
  few	
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Ensemble skill Z500 Europe

HRES	
  the	
  best	
  consistent	
  single-­‐state	
  forecast	
  	
  
But	
  ENS	
  mean	
  be>er	
  
On	
  any	
  day,	
  some	
  members	
  will	
  be	
  be>er	
  aJer	
  3	
  days	
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ENS forecasts: 
timeseries 

(meteogram)

EPSgram for Reading
Start  Sun 25/01/15 00 UTC

Highest value of all members 

 

90th centile 
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Lowest value of all members 

02/02/15 31



Extreme forecast index (EFI)
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User can click on any spot (= cyclonic feature) 
to see how that feature evolves in the EPS 

Extra-­‐tropical	
  feature	
  tracking:	
  Xynthia	
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Tropical cyclone tracks
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strike	
  probability	
  	
  

02/02/15 35



ecCharts
•  Interactivity: zooming, panning, 

…
•  Customisation:

–  Probabilities threshold, …
–  Show/hide, add/remove layers

•  Related products: Meteograms
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ENS spread and error
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850 hPa temperature, N.Hemisphere
ENS spread (dashed), RMS error of ensemble-mean (full 
lines), and their difference (below) in summer. 



ENS Probabilistic Score  
CRPSS, Temperature at 850 hPa N hemisphere

Monthly score (blue), and 12-month running mean (red) of Continuous Ranked Probability 
Skill Score. Day at which score reaches 25%.
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ENS Probabilistic Scores

CRPSS, Temperature at 850 hPa N hemisphere 12-
month running mean of Continuous Ranked Probability 
Skill Score. Day at which score reaches 25%.
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Ensemble skill T850 NH relative to 
ERA-Interim
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ENS Probabilistic Score  
CRPSS, Temperature at 850 hPa N hemisphere
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ENS skill compared to other centres 
24-hour precipitation (extra-tropics)
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August 2013 to July 2014

ECMWF (red), Met Office (blue), JMA (magenta), NCEP (green)



l  ENS	
  had	
  too	
  li>le	
  spread	
  for	
  near	
  surface	
  weather	
  parameters	
  (e.g.	
  10-­‐m	
  
wind)	
  	
  
–  representaTveness	
  (an	
  individual	
  observaTon	
  is	
  not	
  equivalent	
  to	
  a	
  model	
  

grid	
  box	
  average)	
  and	
  errors	
  in	
  the	
  observaTons	
  	
  
–  	
  ENS	
  resoluTon:	
  difficult	
  to	
  represent	
  small-­‐scale	
  phenomena	
  such	
  as	
  sTng	
  

jets	
  
–  AddiTonal	
  sources	
  of	
  uncertainty?	
  

l  Land-­‐surface	
  perturbaTons	
  
–  Added	
  November	
  2013	
  

Surface perturbations

Ensemble	
  spread	
  (dashed)	
  and	
  root-­‐
mean-­‐square	
  error	
  of	
  ensemble-­‐mean	
  
(solid)	
  	
  
autumn	
  (September-­‐November)	
  2012	
  
over	
  Europe	
  

Near-­‐surface	
  wind	
  speed	
  	
  
(verificaTon	
  against	
  
observaTons)	
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ENS – communicating uncertainty
•  All forecasts have errors

•  It can be important for the user to know about the uncertainty in a 
forecast
–  what else could happen? what is the worst possibility?

•  This is not a new idea
–  Forecasters are used to adjusting their forecast with their experience 

of model errors (flow dependence, forecast range dependency)
–  Inconsistency of the forecasts (in time, from one model to the other) 

were used as indication of the (un-)predictability of scenarios

•  Ensembles give more information – they provide an explicit, 
detailed representation of model uncertainties, and potential of 
unusual events
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Uncertainty information to 
public
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Uncertainty information to public
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Value: the economic or societal 
worth of forecasts

•  Forecasts only have value if people use them
–  make a decision or take an action which would not otherwise have 

been made
•  Decisions can be based on deterministic forecasts, but …
•  Decisions involve assessment of risk
•  Risk = probability x impact
•  To make a good decision need to know the probability and the impact 

(consequence to the individual user)

Impact	
  

Probability	
  
RISK	
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Met Office  

Impact	
  

Probability	
  
RISK	
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Met Office cold weather alert

02/02/15 49



MeteoAlarm
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Summary - why do we run an ensemble?
•  The best method we have to produce flow-dependent 

probabilistic weather forecasts 

•  The ensemble gives a range of future scenarios consistent 
with our knowledge of the initial state and model capability
–  explicit indication of uncertainty in today’s forecast
–  Potential of high-impact events
–  Range of ensemble-based products for different users

•  Ensembles provide the required input for a range of 
application models (hydrology, ship routing, energy demand), 
explicitly propagating the atmospheric uncertainty 

•  Read more in the ECMWF products User Guide
–  http://www.ecmwf.int/products/forecasts/guide/

02/02/15 51



Ensemble references
•  Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer (2009), A spectral stochastic 

kinetic energy backscatter scheme and its impact on flow-dependent predictability in the 
ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626.

•  Buizza, R., Leutbecher, M., & Isaksen, L., 2008: Potential use of an ensemble of analyses in 
the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc., 134, 2051-2066.

•  Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., & Vitart, F., 2007: The new 
ECMWF VAREPS. Q. J. Roy. Meteorol. Soc., 133, 681-695 (also EC TM 499).

•  Buizza, R., 2008: Comparison of a 51-member low-resolution (TL399L62) ensemble with a 6-
member high-resolution (TL799L91) lagged-forecast ensemble. Mon. Wea. Rev., 136, 3343-3362 
(also EC TM 559).

•  Buizza, R., 2014: The TIGGE global, medium-range ensembles. ECMWF Technical Memorandum 
739.

•  Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher & L. Raynaud, 2010: 
Ensemble of data assimilations at ECMWF. ECMWF Technical Memorandum n. 636.

•  Lalaurette F. 2002. Early detection of abnormal weather conditions using a probabilistic extreme 
forecast index. Q. J. R. Meteorol. Soc. 129: 3037–3057.

•  Leutbecher, M. 2005: On ensemble prediction using singular vectors started from forecasts. 
ECMWF TM 462, pp 11. 

•  Leutbecher, M. & T.N. Palmer, 2008: Ensemble forecasting. J. Comp. Phys., 227, 3515-3539 (also 
EC TM 514).

•  Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T., 1996: The new ECMWF ensemble 
prediction system: methodology and validation. Q. J. R. Meteorol. Soc., 122, 73-119. 

02/02/15 52



Ensemble references
•  Palmer, T N, Buizza, R., Leutbecher, M., Hagedorn, R., Jung, T., Rodwell, M, Virat, F., Berner, J., 

Hagel, E., Lawrence, A., Pappenberger, F., Park, Y.-Y., van Bremen, L., Gilmour, I., & Smith, L., 
2007: The ECMWF Ensemble Prediction System: recent and on-going developments. A paper 
presented at the 36th Session of the ECMWF Scientific Advisory Committee (also EC TM 540).

•  Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G. J., Steinheimer 
M., & Weisheimer, A., 2009: Stochastic parametrization and model uncertainty. ECMWF RD TM 
598, Shinfield Park, Reading RG2-9AX, UK, pp. 42.

•  Richardson, D. S., 2000. Skill and relative economic value of the ECMWF Ensemble Prediction 
System. Q. J. R. Meteorol. Soc., 126, 649-668.

•  Richardson, D.S., 2003. Economic value and skill.  In Forecast verification: a practitioner’s guide 
in atmospheric science, Jolliffe, I. T. and Stephenson, D. B., Eds., Wiley, 240pp.

•  Vitart, F., Buizza, R., Alonso Balmaseda, M., Balsamo, G., Bidlot, J. R., Bonet, A., Fuentes, M., 
Hofstadler, A., Molteni, F., & Palmer, T. N., 2008: The new VAREPS-monthly forecasting system: a 
first step towards seamless prediction. Q. J. Roy. Meteorol. Soc., 134, 1789-1799.

•  Zsoter, E., Buizza, R., & Richardson, D., 2009: 'Jumpiness' of the ECMWF and UK Met Office 
EPS control and ensemble-mean forecasts'. Mon. Wea. Rev., 137, 3823-3836.

•  Zsótér E. 2006. Recent developments in extreme weather forecasting. ECMWF Newsletter 107, 
Spring 2006, pp 8–17.

•  Zsoter, E., Pappenberger, F. and Richardson, D., 2014, Sensitivity of model climate to sampling 
configurations and the impact on the Extreme Forecast Index. Met. Apps. doi: 10.1002/met.1447

02/02/15 53



Observed track of 
Sandy

Track	
  forecasts	
  	
  
6.5	
  days	
  before	
  landfall	
  

First	
  indica0ons	
  
	
  9.5	
  days	
  before	
  landfall	
  

Superstorm	
  Sandy	
  

2	
  days	
  before	
  Sandy	
  formed	
  (9.5	
  days	
  before	
  landfall	
  in	
  New	
  Jersey)	
  there	
  was	
  
already	
  a	
  significant	
  probability	
  (25%)	
  of	
  a	
  severe	
  wind	
  storm	
  affec0ng	
  NE	
  USA	
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Sandy: ENS PV evolution
Forecast from 0 UTC on 25 October 
 
three ensemble members: 
  control (top) 
  M09 (bottom L)  “caught” too late 
  M19 (bottom R)  “escaped” 
 
PV on 320K (6h steps) 

02/02/15 55


