**ECMWF COPERNICUS REPORT** Copernicus Climate Change Service # D381.1.1.1. Consolidation of the Atlas Monthly Dataset (v1; IPCC Interactive Atlas version) in the CDS Issued by: CSIC Date: 29/9/2022 Ref: C3S2 D381.1.1.1 202208 dataset-v1 v4 Official reference number service contract: 2022/C3S2\_381 \_CSIC/SC1 This document has been produced in the context of the Copernicus Climate Change Service (C3S). The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf on the European Union (Contribution Agreement signed on 22/07/2021). All information in this document is provided "as is" and no guarantee of warranty is given that the information is fit for any particular purpose. The users thereof use the information at their sole risk and liability. For the avoidance of all doubt, the European Commission and the European Centre for Medium-Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view. # Contributors ## **CSIC** José Manuel Gutiérrez Antonio Cofiño Javier Díez ## **Predictia** Daniel San Martín Sergio Natal Max Tuni # **Table of Contents** | 1. | Introduction | 4 | |-----|----------------------------------------------------------|----| | 2. | The C3S Interactive Climate Atlas Datasets | 5 | | 3. | Description of the Atlas Monthly Dataset version 1 (v1) | 6 | | 3.1 | Variables and Indices | 7 | | 3.2 | Experiments and GCM/RCM simulations | 8 | | 3.3 | Scenarios and time periods | 9 | | 3.4 | File format and archiving | 9 | | 3.5 | License | 9 | | 4. | Conclusions | 9 | | 5. | Annex 1. Simulations for different experiments / domains | 11 | #### 1. Introduction The IPCC Interactive Atlas (IPCC-IA, <a href="http://interactive-atlas.ipcc.ch">http://interactive-atlas.ipcc.ch</a>) is an innovation of the Working Group I contribution to the Sixth Assessment Report (AR6) supporting the assessment done in the chapters, the Technical Summary (TS) and the Summary for Policy Makers (SPM)<sup>1</sup>. The IPCC-IA allows flexible (but limited) spatial and temporal analyses of key authoritative climate change products used in IPCC the report (such as maps, time series, annual cycle plots, or global warming level plots, including uncertainty information) for a number of key atmospheric and oceanic variables and indices<sup>2</sup>. These products were computed from both global (CMIP5 and CMIP6) and regional (CORDEX) projections –used as complementary lines of evidence in the AR6 report– for a range of emissions scenarios across predefined historical and future (near-, medium-, or long-term) periods and warming levels (1.5, 2, 3 and 4 °C). These products and options were carefully designed during the preparation of the IPCC report to convey relevant information along different climate dimensions for a wide range of users, from policymakers to practitioners. However, the spatial and temporal scales of analysis used in the IPCC-IA are limited to those scales assessed in the report; for instance, regional analysis is limited to the pre-defined regions used in the AR6-WGI report<sup>3</sup> (in particular the subcontinental IPCC reference regions). This prevents the use of the IPCC-IA for the calculation of customised regional information (e.g. at country level) that is highly demanded by users. The calculation of fully customised products is facilitated by making publicly available the intermediate dataset post-processed from the original CMIP and CORDEX data and used to calculate the IPCC-IA products. This is ongoing work as part of the IPCC activities for the adoption of FAIR (findability, accessibility, Interoperability and reproducibility) data principles in the AR6 report<sup>4</sup>. FAIR data principles<sup>5</sup> aim to facilitate open science by ensuring that the data and code are findable and accessible and can be reused for reproducibility and for further developments. The novel implementation of these principles in the AR6 report is done in collaboration with the IPCC Data Distribution Center (IPCC-DDC; <a href="http://ipcc-data.org">http://ipcc-data.org</a>), under the supervision of the IPCC Task Group on Data Support for Climate Change Assessments (TG-Data, <a href="https://www.ipcc.ch/data">https://www.ipcc.ch/data</a>), and includes the archival and data access services for key intermediate datasets created by IPCC authors during the preparation of the AR6 report. One of these intermediate datasets is the "IPCC-IA Monthly Dataset" and consists of the curated and harmonized (common calendars, common grids and monthly temporal frequency) CMIP and CORDEX projection data underpinning the IPCC-IA, allowing for flexible customization and expansion of the products provided by the IPCC-IA. This document presents the work done within the contract WP1 (Task C3S2\_381\_11: Interactive Atlas Monthly Dataset) to consolidate the "IPCC-IA Monthly Dataset" using the data developed for the IPCC-IA. This process included the definition of an appropriate data model (aligned with CMIP <sup>&</sup>lt;sup>1</sup> https://www.ipcc.ch/report/ar6/wg1 <sup>&</sup>lt;sup>2</sup> https://interactive-atlas.ipcc.ch/regional-information/about <sup>&</sup>lt;sup>3</sup> https://github.com/IPCC-WG1/Atlas/tree/main/reference-regions <sup>&</sup>lt;sup>4</sup> https://doi.org/10.5281/zenodo.6504468 <sup>&</sup>lt;sup>5</sup> https://www.nature.com/articles/sdata201618 and CORDEX specifications) and the generation of CF-compliant NetCDF archives with comprehensive and curated metadata (e.g. fixing problems with temporal and geospatial attributes). The document describes the main characteristics of the resulting dataset and the details required for planning its archival in the CDS (this document will be circulated to CDS representatives to coordinate data transferal and publication/documentation in the CDS). Further technical information is provided in the complementary deliverable D3.1.1 "Documentation and metadata produced for the Atlas Monthly Dataset (v1)". This dataset will be used as the first version of the "C3S Atlas Dataset" and the work done will pave the way for archiving forthcoming datasets in the CDS (future versions building on CDS data with expanded datasets and variables/indices). Moreover, this work has contributed to support the activities of the IPCC-DDC<sup>6</sup> and to align IPCC and C3S products (the long-term version archived in IPCC-DDC for AR6 traceability will be the same as the one provided by the CDS). This will attract user's interest to the C3S Interactive Climate Atlas initiative which will develop expanded datasets (WP1), an Interactive Atlas with further functionalities (WP2) and also user tools to operate with the data (via the Toolbox, WP3). #### 2. The C3S Interactive Climate Atlas Datasets The C3S Interactive Climate Atlas will provide access to a variety of products (developed in Task C3S2\_381\_11 using the software produced in Task C3S2\_381\_13) for a number of variables and indices from different data sources, computed using the available C3S infrastructure as illustrated in Figure 1. This involves the calculation of an intermediate dataset (the Atlas Monthly Dataset) with monthly aggregated values of the variables/indices curated and harmonized spatially (regular grids) and temporally (e.g. leap years, different calendars). This involves index calculation and/or bias adjustment (when needed) and curation and harmonization (in all cases). This activity will produce three versions of the intermediate dataset that will be stored and make accessible from the CDS and the Toolbox. The first version of this dataset (discussed in this report) will be the one used to produce the IPCC Interactive Atlas Monthly Dataset, so afterwards C3S will be an evolution from the frozen IPCC Interactive Atlas. The development of the web application (frontend and backend) will require precomputing some products (temporal aggregations, spatial aggregations, auxiliary values for uncertainty, global warming levels, etc.) from this intermediate monthly dataset, so it is a fundamental part for the development of the C3S Interactive Climate Atlas, providing transparency and allowing for reproducibility and reusability. <sup>&</sup>lt;sup>6</sup> CSIC is one of the four partners providing in-kind support to the IPCC-DDC, and is responsible for the curation, standardization and long-term archiving of IPCC-IA relevant datasets. **Figure 1.** Schematic illustration of the C3S components involved in the development of the C3S Interactive Climate Atlas (left) and the key activities using these components (yellow arrows), including the preparation of the Atlas data and its storage in the CDS (indicated by the yellow arrow with black border). # 3. Description of the Atlas Monthly Dataset version 1 (v1) The first version of the Atlas Monthly Dataset (v1) corresponds to the dataset used in the preparation of the IPCC WGI Interactive Atlas and is listed as one of the key intermediate IPCC WGI products in the IPCC Data Distribution Center <sup>7</sup>. This will be extended in future C3S versions with new variables/indices and updated datasets from the CDS. The inclusion of this dataset in the CDS is twofold. On the one hand, this first version will serve to establish a connection with the IPCC Interactive Atlas and will allow CDS users to compare future C3S versions with the original IPCC frozen version, keeping track of differences and changes; this will also promote the role of the C3S as a contributor to IPCC activities, facilitating the access to key IPCC datasets. On the other hand, this dataset is highly demanded by users/practitioners who want to develop customized products not available in the IPCC Interactive Atlas (e.g. regional information at subnational or national scales); note that this dataset is not available for download from the IPCC Interactive Atlas and, therefore, the CDS could facilitate this task to C3S users, providing easy access to data (via the CDS) and virtual resources (via the Toolbox) for product customization. This initial version cannot be reproduced with a CDS workflow, because some of the data sources used in the IPCC report are different from those currently stored in the CDS (different versions for some datasets) and some of the tools (like regridding and bias correction) are not available. Future versions of the dataset will be produced with a CDS workflow in Task C3S2\_381\_13. The main characteristics of this initial version (v1) of the dataset are described in the following sections. <sup>&</sup>lt;sup>7</sup> https://www.ipcc-data.org/ar6landing.html #### 3.1 Variables and Indices Table 1 shows the variables (in bold) and derived indices included in the dataset as well as their description. Atmospheric and oceanic variables are shown in black and blue, respectively. Note that for two illustrative threshold-dependent indices (TX35 and TX40), the dataset includes results obtained using both the raw and the bias adjusted values (using the ISIMIP3 trend-preserving bias adjustment method; see Section Atlas.1.4.58). Note that all variables and indices are aggregated at monthly or annual temporal resolution. The indices included in this dataset are generic indices for extremes (used in Chapter 11<sup>9</sup>; see Annex VI<sup>10</sup>) and climatic impact-drivers (used in Chapter 12<sup>11</sup>; see Annex VI), selected to support the assessment made in these chapters. | # | Code | IPCC-IA Label | Description | | | |----|------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--| | 1 | t | | Monthly mean of daily mean near-surface (2 meters) air temperature | | | | 2 | tn | Monthly mean of daily minimum temperature | Monthly mean of daily minimum near-surface (2 meters) air temperature | | | | 3 | tx | Monthly mean of daily maximum temperature | Monthly mean of daily maximum near-surface (2 meters) air temperature | | | | 4 | tnn | Monthly minimum of daily minimum temperature | Monthly minimum of daily minimum near-surface (2 meters) air temperature | | | | 5 | txx | Monthly maximum of daily maximum temperature | Monthly maximum of daily maximum near-surface (2 meters) air temperature | | | | 6 | tx35 | Monthly count of days with maximum temperature above 35 °C | Monthly count of days with maximum near-surface (2 meters) temperature above 35 °C | | | | 7 | | Bias adjusted monthly count of days with maximum temperature above 35 °C | Bias adjusted (ISIMIP3 trend preserving method) monthly count of days with maximum near-surface (2 meters) temperature above 35 °C | | | | 8 | tx40 | Monthly count of days with maximum temperature above 40 °C | Monthly count of days with maximum near-surface (2 meters) temperature above 40 °C | | | | 9 | | Bias adjusted monthly count of days with maximum temperature above 40 °C | Bias adjusted (ISIMIP3 trend preserving method) monthly count of days with maximum near-surface temperature above 40 °C | | | | 10 | fd | Monthly count of frost days | Monthly count of days with minimum near-surface (2 meters) temperature below 0 °C | | | | 11 | hd | Heating degree-days | Annual energy consumption to heat the deficit of temperature below 15.5 °C | | | | 12 | cd | Cooling degree-days | Annual energy consumption to cool the excess of temperature above 22 °C | | | <sup>&</sup>lt;sup>8</sup> https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC\_AR6\_WGI\_Atlas.pdf <sup>&</sup>lt;sup>9</sup> https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC AR6 WGI Chapter11.pdf <sup>10</sup> https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC\_AR6\_WGI\_AnnexVI.pdf <sup>11</sup> https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC\_AR6\_WGI\_Chapter12.pdf | 13 | ı nr | Monthly mean of daily accumulated precipitation | Monthly mean of daily accumulated precipitation of liquid water equivalent from all phases | | | |----|---------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | 14 | · · · · · · · · · · · · · · · · · · · | | Monthly mean of daily accumulated liquid water equivalen thickness snowfall | | | | 15 | i rvinav | Monthly maximum of 1-day accumulated precipitation | Monthly maximum of 1-day accumulated precipitation of liquid water equivalent from all phases | | | | 16 | i rysdav | Monthly maximum of 5-day accumulated precipitation | Monthly maximum of 5-day accumulated precipitation of liquid water equivalent from all phases | | | | 17 | cdd Annual consecutive dry days | | Annual maximum of consecutive days when daily accumulated precipitation amount is below 1 mm | | | | 18 | spi6 | Standardized precipitation index for 6 months cumulation period | Monthly index that compares accumulated precipitation for 6 months with the long-term precipitation distribution for the same location and accumulation period | | | | 19 | ESTOWING | Monthly mean of daily mean wind speed | Monthly mean of daily mean near-surface (10 meters) wind speed | | | | 20 | sst | Monthly mean of sea surface temperature | Monthly mean temperature of sea water near the surface | | | | 21 | ph | Monthly mean of acidity (pH) of seawater | Monthly mean of negative log of hydrogen ion concentration with the concentration expressed as mol H kg-1 | | | | 22 | siconc | Monthly mean of sea-ice area percentage | Monthly mean percentage of sea grid cell area covered by ice | | | **Table 1.** Description of the variables (in bold) and indices for the Atlas Monthly Dataset. The oceanic variables are shown in blue. #### 3.2 Experiments and GCM/RCM simulations The dataset contains simulations from three experiments: **CMIP6** (global, with 1° horizontal resolution), **CMIP5** (global, with 2° horizontal resolution), and CORDEX (regional, with 0.5° horizontal resolution, with the exception of Europe, with 0.25° horizontal resolution). Note that all models from the same experiment are regridded to the common grids with predefined resolution. CORDEX includes different regional domains which are indicated in the dataset as different experiments (CORDEX-AFR, or just AFR, etc.) as follows: CORDEX Africa (AFR) CORDEX Antarctica (ANT) CORDEX Arctic (ARC) CORDEX Australasia (AUS) CORDEX Central America (CAM) CORDEX East Asia (EAS) CORDEX Europe (EUR) CORDEX North America (NAM) CORDEX South America (**SAM**) CORDEX South Asia (WAS) CORDEX South East Asia (SEA) Table A1.1 (in Annex 1 "Simulations") provides information about the simulations or members provided by the dataset for the different domains (last column). #### 3.3 Scenarios and time periods Model simulations are available for recent-past (historical scenario) and future periods (RCP2.6, RCP4.5 and RCP8.5 scenarios for CMIP5 and CORDEX, and SSP1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5 for CMIP6) with monthly temporal frequency. The historical scenario provides data for a pre-industrial period (1850-1900 for CMIP5 and CMIP6) and a modern period (1970-2005 / 1950-2014 for CORDEX / CMIP5 / CMIP6, according to data availability). The future scenarios provide data for 2006-2100 / 2015-2100 for CORDEX and CMIP5 / CMIP6. ### 3.4 File format and archiving Files have been generated using netcdf-c verion 4.4.1.1 and hdf5 version 1.8.18 libraries using NETCDF4 data model. The resulting files are NetCFD format and metadata is CF1.9<sup>12</sup> compliant allowing for string type NetCDF variables (used to define some attributes in the files, such as members). The attribute convention for data discovery is ACDD-1.3<sup>13</sup> compliant (including reference, geospatial, etc.). Data is stored in different files for different experiments, scenarios and variables/indices (using the naming convention *experiment\_ scenario\_index.nc*), including all members (see Table A1.1) in the same file using the member attribute and the full time periods described in Section 2.3; this was done to facilitate long-term data archival in the IPCC-DDC and the resulting dataset contains 806 files with a total volume of 400 GB (high compression rate is used), with file sizes ranging from 5GB to 600 KB. The archiving convention can be adapted to facilitate CDS archiving, adopting other convention and/or splitting the files for different members and/or years. Data transfer can be done though either push or pull approaches at the CDS convenience. This will be agreed in the next coordination meeting with CDS representatives, scheduled for 12 September, during the C3S General Assembly. #### 3.5 License The IPCC-IA Monthly Dataset is made available under Creative Commons Attribution 4.0 (<a href="http://creativecommons.org/licenses/by/4.0">http://creativecommons.org/licenses/by/4.0</a>). ## 4. Conclusions 1 <sup>12</sup> https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html <sup>13</sup> https://wiki.esipfed.org/Attribute Convention for Data Discovery 1-3 The IPCC Interactive Atlas (IPCC-IA, <a href="http://interactive-atlas.ipcc.ch">http://interactive-atlas.ipcc.ch</a>) allows flexible (but limited) analysis of authoritative climate change products from global and regional climate projections. For instance, it allows to obtain regional climate change information only for the pre-defined regions used in the AR6-WGI report (in particular the subcontinental IPCC reference regions), preventing the calculation of customized regional information (e.g. at a country level), which is highly demanded by users. The "IPCC-IA Monthly Dataset" consists of the curated and harmonized (common calendars, common grids and monthly temporal frequency) CMIP and CORDEX projection data underpinning the IPCC-IA and facilitating the expansion of the results producing customized products. The C3S Interactive Climate Atlas will develop an evolution of the IPCC-IA, building on C3S datasets to expand the Atlas Dataset (new datasets, variables and indices) and the functionalities of the IPCC-IA, including also user tools for data processing on the resulting datasets. This document presents the work done within WP1 (Task C3S2\_381\_11: Interactive Atlas Monthly Dataset) to consolidate the "IPCC-IA Monthly Dataset", which will be the first version of the C3S Climate Atlas dataset after publication in the CDS. This process included the definition of an appropriate data model and the generation of standard archives with comprehensive curated metadata. The document describes the main characteristics of the resulting dataset and the details required for planning its archival in the CDS. This document will be circulated to CDS representatives to coordinate data transferal and documentation for publication in the CDS. Further technical information is provided in the complementary deliverable D3.1.1 "Documentation and metadata produced for the Atlas Monthly Dataset (v1)". # 5. Annex 1. Simulations for different experiments / domains | # | MEMBER LABEL | GCM | RCM | EXPERIMENTS | |----|-------------------------------------|---------------|-----|-------------| | 0 | AS-RCEC_TaiESM1_r1i1p1f1 | TaiESM1 | | [CMIP6] | | 1 | AWI_AWI-CM-1-1-MR_r1i1p1f1 | AWI-CM-1-1-MR | | [CMIP6] | | 2 | BCC_BCC-CSM2-MR_r1i1p1f1 | BCC-CSM2-MR | | [CMIP6] | | 3 | BCC_bcc-csm1-1-m_r1i1p1 | bcc-csm1-1-m | | [CMIP5] | | 4 | BCC_bcc-csm1-1_r1i1p1 | bcc-csm1-1 | | [CMIP5] | | 5 | BNU_BNU-ESM_r1i1p1 | BNU-ESM | | [CMIP5] | | 6 | CAMS_CAMS-CSM1-0_r2i1p1f1 | CAMS-CSM1-0 | | [CMIP6] | | 7 | CAS_FGOALS-g3_r1i1p1f1 | FGOALS-g3 | | [CMIP6] | | 8 | CCCR-IITM_IITM-ESM_r1i1p1f1 | IITM-ESM | | [CMIP6] | | 9 | CCCma_CanESM2_r1i1p1 | CanESM2 | | [CMIP5] | | 10 | CCCma_CanESM5_r1i1p1f1 | CanESM5 | | [CMIP6] | | 11 | CMCC_CMCC-CM2-SR5_r1i1p1f1 | CMCC-CM2-SR5 | | [CMIP6] | | 12 | CMCC_CMCC-CMS_r1i1p1 | CMCC-CMS | | [CMIP5] | | 13 | CMCC_CMCC-CM_r1i1p1 | CMCC-CM | | [CMIP5] | | 14 | CNRM-CERFACS_CNRM-CM5_r1i1p1 | CNRM-CM5 | | [CMIP5] | | 15 | CNRM-CERFACS_CNRM-CM6-1-HR_r1i1p1f2 | CNRM-CM6-1-HR | | [CMIP6] | | 16 | CNRM-CERFACS_CNRM-CM6-1_r1i1p1f2 | CNRM-CM6-1 | | [CMIP6] | | 17 | CNRM-CERFACS_CNRM-ESM2-1_r1i1p1f2 | CNRM-ESM2-1 | | [CMIP6] | | 18 | CSIRO-ARCCSS_ACCESS-CM2_r1i1p1f1 | ACCESS-CM2 | [CMIP6] | |----|-----------------------------------------------|------------------|---------| | 19 | CSIRO-BOM_ACCESS1-0_r1i1p1 | ACCESS1-0 | [CMIP5] | | 20 | CSIRO-BOM_ACCESS1-3_r1i1p1 | ACCESS1-3 | [CMIP5] | | 21 | CSIRO-QCCCE_CSIRO-Mk3-6-0_r1i1p1 | CSIRO-Mk3-6-0 | [CMIP5] | | 22 | CSIRO_ACCESS-ESM1-5_r1i1p1f1 | ACCESS-ESM1-5 | [CMIP6] | | 23 | EC-Earth-Consortium_EC-Earth3-Veg-LR_r1i1p1f1 | EC-Earth3-Veg-LR | [CMIP6] | | 24 | EC-Earth-Consortium_EC-Earth3-Veg_r1i1p1f1 | EC-Earth3-Veg | [CMIP6] | | 25 | EC-Earth-Consortium_EC-Earth3_r1i1p1f1 | EC-Earth3 | [CMIP6] | | 26 | ICHEC_EC-EARTH_r12i1p1 | EC-EARTH | [CMIP5] | | 27 | INM_INM-CM4-8_r1i1p1f1 | INM-CM4-8 | [CMIP6] | | 28 | INM_INM-CM5-0_r1i1p1f1 | INM-CM5-0 | [CMIP6] | | 29 | INM_inmcm4_r1i1p1 | inmcm4 | [CMIP5] | | 30 | IPSL_IPSL-CM5A-LR_r1i1p1 | IPSL-CM5A-LR | [CMIP5] | | 31 | IPSL_IPSL-CM5A-MR_r1i1p1 | IPSL-CM5A-MR | [CMIP5] | | 32 | IPSL_IPSL-CM5B-LR_r1i1p1 | IPSL-CM5B-LR | [CMIP5] | | 33 | IPSL_IPSL-CM6A-LR_r1i1p1f1 | IPSL-CM6A-LR | [CMIP6] | | 34 | KIOST_KIOST-ESM_r1i1p1f1 | KIOST-ESM | [CMIP6] | | 35 | MIROC_MIROC-ES2L_r1i1p1f2 | MIROC-ES2L | [CMIP6] | | 36 | MIROC_MIROC-ESM-CHEM_r1i1p1 | MIROC-ESM-CHEM | [CMIP5] | | 37 | MIROC_MIROC-ESM_r1i1p1 | MIROC-ESM | [CMIP5] | | 38 | MIROC_MIROC5_r1i1p1 | MIROC5 | [CMIP5] | | 39 | MIROC_MIROC6_r1i1p1f1 | MIROC6 | [CMIP6] | | 40 | MOHC_HadGEM2-CC_r1i1p1 | HadGEM2-CC | [CMIP5] | |----|-------------------------------|-----------------|---------| | 41 | MOHC_HadGEM2-ES_r1i1p1 | HadGEM2-ES | [CMIP5] | | 42 | MOHC_HadGEM3-GC31-LL_r1i1p1f3 | HadGEM3-GC31-LL | [CMIP6] | | 43 | MOHC_UKESM1-0-LL_r1i1p1f2 | UKESM1-0-LL | [CMIP6] | | 44 | MPI-M_MPI-ESM-LR_r1i1p1 | MPI-ESM-LR | [CMIP5] | | 45 | MPI-M_MPI-ESM-MR_r1i1p1 | MPI-ESM-MR | [CMIP5] | | 46 | MPI-M_MPI-ESM1-2-HR_r1i1p1f1 | MPI-ESM1-2-HR | [CMIP6] | | 47 | MPI-M_MPI-ESM1-2-LR_r1i1p1f1 | MPI-ESM1-2-LR | [CMIP6] | | 48 | MRI_MRI-CGCM3_r1i1p1 | MRI-CGCM3 | [CMIP5] | | 49 | MRI_MRI-ESM2-0_r1i1p1f1 | MRI-ESM2-0 | [CMIP6] | | 50 | NCAR_CCSM4_r1i1p1 | CCSM4 | [CMIP5] | | 51 | NCAR_CESM2-WACCM_r1i1p1f1 | CESM2-WACCM | [CMIP6] | | 52 | NCAR_CESM2_r4i1p1f1 | CESM2 | [CMIP6] | | 53 | NCC_NorESM1-M_r1i1p1 | NorESM1-M | [CMIP5] | | 54 | NCC_NorESM2-LM_r1i1p1f1 | NorESM2-LM | [CMIP6] | | 55 | NCC_NorESM2-MM_r1i1p1f1 | NorESM2-MM | [CMIP6] | | 56 | NIMS-KMA_KACE-1-0-G_r2i1p1f1 | KACE-1-0-G | [CMIP6] | | 57 | NOAA-GFDL_GFDL-CM3_r1i1p1 | GFDL-CM3 | [CMIP5] | | 58 | NOAA-GFDL_GFDL-CM4_r1i1p1f1 | GFDL-CM4 | [CMIP6] | | 59 | NOAA-GFDL_GFDL-ESM2G_r1i1p1 | GFDL-ESM2G | [CMIP5] | | 60 | NOAA-GFDL_GFDL-ESM2M_r1i1p1 | GFDL-ESM2M | [CMIP5] | | 61 | NOAA-GFDL_GFDL-ESM4_r1i1p1f1 | GFDL-ESM4 | [CMIP6] | | 62 | NSF-DOE-NCAR_CESM1-BGC_r1i1p1 | CESM1-BGC | | [CMIP5] | |----|---------------------------------------------------|-----------|------------|----------------------| | 63 | NUIST_NESM3_r1i1p1f1 | NESM3 | | [CMIP6] | | 64 | CCCma_CanESM2_r1i1p1_CCCma_CanRCM4_r2 | CanESM2 | CanRCM4 | [NAM, ARC, AFR] | | 65 | CCCma_CanESM2_r1i1p1_CSIRO_CCAM-2008_v1 | CanESM2 | CCAM-2008 | [AUS] | | 66 | CCCma_CanESM2_r1i1p1_IITM_RegCM4-4_v5 | CanESM2 | RegCM4-4 | [WAS] | | 67 | CCCma_CanESM2_r1i1p1_OURANOS_CRCM5_v1 | CanESM2 | CRCM5 | [NAM, CAM] | | 68 | CCCma_CanESM2_r1i1p1_SMHI_RCA4_v1 | CanESM2 | RCA4 | [NAM, ARC, AFR, CAM] | | 69 | CCCma_CanESM2_r1i1p1_SMHI_RCA4_v2 | CanESM2 | RCA4 | [WAS] | | 70 | CCCma_CanESM2_r1i1p1_SMHI_RCA4_v3 | CanESM2 | RCA4 | [SAM] | | 71 | CCCma_CanESM2_r1i1p1_UCAN_WRF341I_v2 | CanESM2 | WRF341I | [SAM] | | 72 | CCCma_CanESM2_r1i1p1_UNSW_WRF360J_v1 | CanESM2 | WRF360J | [AUS] | | 73 | CCCma_CanESM2_r1i1p1_UNSW_WRF360K_v1 | CanESM2 | WRF360K | [AUS] | | 74 | CCCma_CanESM2_r1i1p1_UQAM_CRCM5_v1 | CanESM2 | CRCM5 | [NAM, ARC, AFR] | | 75 | CNRM-CERFACS_CNRM-CM5_r1i1p1_CLMcom_CCLM4-8-17_v1 | CNRM-CM5 | CCLM4-8-17 | [EUR, AFR] | | 76 | CNRM-CERFACS_CNRM-CM5_r1i1p1_CLMcom_CCLM5-0-2_v1 | CNRM-CM5 | CCLM5-0-2 | [EAS] | | 77 | CNRM-CERFACS_CNRM-CM5_r1i1p1_CNRM_ALADIN63_v2 | CNRM-CM5 | ALADIN63 | [EUR] | | 78 | CNRM-CERFACS_CNRM-CM5_r1i1p1_DMI_HIRHAM5_v2 | CNRM-CM5 | HIRHAM5 | [EUR] | | 79 | CNRM-CERFACS_CNRM-CM5_r1i1p1_GERICS_REMO2015_v2 | CNRM-CM5 | REMO2015 | [EUR] | | 80 | CNRM-CERFACS_CNRM-CM5_r1i1p1_IITM_RegCM4-4_v5 | CNRM-CM5 | RegCM4-4 | [WAS] | | 81 | CNRM-CERFACS_CNRM-CM5_r1i1p1_IPSL_WRF381P_v2 | CNRM-CM5 | WRF381P | [EUR] | | 82 | CNRM-CERFACS_CNRM-CM5_r1i1p1_KNMI_RACMO22E_v2 | CNRM-CM5 | RACMO22E | [EUR] | | 83 | CNRM-CERFACS_CNRM-CM5_r1i1p1_OURANOS_CRCM5_v1 | CNRM-CM5 | CRCM5 | [NAM, CAM] | | | | | 1 | | |-----|--------------------------------------------------------------|---------------|-----------------------|-----------------| | 84 | CNRM-CERFACS_CNRM-CM5_r1i1p1_RMIB-UGent_UGent-ALARO-<br>0_v1 | CNRM-CM5 | UGent-ALARO-0 | [EUR] | | 85 | CNRM-CERFACS_CNRM-CM5_r1i1p1_SMHI_RCA4_v1 | CNRM-CM5 | RCA4 | [EUR, AFR, CAM] | | 86 | CNRM-CERFACS_CNRM-CM5_r1i1p1_SMHI_RCA4_v2 | CNRM-CM5 | RCA4 | [WAS] | | 87 | CSIRO-BOM_ACCESS1-0_r1i1p1_CSIRO_CCAM-2008_v1 | ACCESS1-0 | CCAM-2008 | [AUS] | | 88 | CSIRO-BOM_ACCESS1-0_r1i1p1_UNSW_WRF360J_v1 | ACCESS1-0 | WRF360J | [AUS] | | 89 | CSIRO-BOM_ACCESS1-0_r1i1p1_UNSW_WRF360K_v1 | ACCESS1-0 | WRF360K | [AUS] | | 90 | CSIRO-BOM_ACCESS1-3_r1i1p1_ULg_MAR311_v1 | ACCESS1-3 | MAR311 | [ANT] | | 91 | CSIRO-BOM_ACCESS1-3_r1i1p1_UNSW_WRF360J_v1 | ACCESS1-3 | WRF360J | [AUS] | | 92 | CSIRO-BOM_ACCESS1-3_r1i1p1_UNSW_WRF360K_v1 | ACCESS1-3 | WRF360K | [AUS] | | 93 | CSIRO-QCCCE_CSIRO-Mk3-6-0_r1i1p1_IITM_RegCM4-4_v5 | CSIRO-Mk3-6-0 | RegCM4-4 | [WAS] | | 94 | CSIRO-QCCCE_CSIRO-Mk3-6-0_r1i1p1_SMHI_RCA4_v1 | CSIRO-Mk3-6-0 | RCA4 | [AFR, CAM] | | 95 | CSIRO-QCCCE_CSIRO-Mk3-6-0_r1i1p1_SMHI_RCA4_v2 | CSIRO-Mk3-6-0 | RCA4 | [WAS] | | 96 | CSIRO-QCCCE_CSIRO-Mk3-6-0_r1i1p1_SMHI_RCA4_v3 | CSIRO-Mk3-6-0 | RCA4 | [SAM] | | 97 | ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17-CLM3-5_v1 | EC-EARTH | CCLM4-8-17-CLM3-5 | [AUS] | | 98 | ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17_v1 | EC-EARTH | CCLM4-8-17 | [EUR, AFR] | | 99 | ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM5-0-2_v1 | EC-EARTH | CCLM5-0-2 | [EAS] | | 100 | ICHEC_EC-EARTH_r12i1p1_CLMcom_ETH-COSMO-crCLIM-v1-1_v1 | EC-EARTH | ETH-COSMO-crCLIM-v1-1 | [EUR, WAS] | | 101 | ICHEC_EC-EARTH_r12i1p1_DMI_HIRHAM5_v1 | EC-EARTH | HIRHAM5 | [EUR] | | 102 | ICHEC_EC-EARTH_r12i1p1_ICTP_RegCM4-6_v1 | EC-EARTH | RegCM4-6 | [EUR] | | 103 | ICHEC_EC-EARTH_r12i1p1_IPSL_WRF381P_v1 | EC-EARTH | WRF381P | [EUR] | | 104 | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO21P_v1 | EC-EARTH | RACMO21P | [ANT] | | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO22E_v1 | EC-EARTH | RACMO22E | [EUR] | |-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------| | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO22T_v1 | EC-EARTH | RACMO22T | [AFR] | | ICHEC_EC-EARTH_r12i1p1_MOHC_HadREM3-GA7-05_v1 | EC-EARTH | HadREM3-GA7-05 | [EUR] | | ICHEC_EC-EARTH_r12i1p1_MPI-CSC_REMO2009_v1 | EC-EARTH | REMO2009 | [AFR] | | ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4-SN_v1 | EC-EARTH | RCA4-SN | [ARC] | | ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v1 | EC-EARTH | RCA4 | [NAM, ARC, EUR, AFR, CAM] | | ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v2 | EC-EARTH | RCA4 | [WAS] | | ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v3 | EC-EARTH | RCA4 | [SAM] | | ICHEC_EC-EARTH_r1i1p1_KNMI_RACMO21P_v1 | EC-EARTH | RACMO21P | [ANT] | | ICHEC_EC-EARTH_r1i1p1_RU-CORE_RegCM4-3_v4 | EC-EARTH | RegCM4-3 | [SEA] | | ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v1 | EC-EARTH | HIRHAM5 | [EAS, NAM, ARC, ANT] | | ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v2 | EC-EARTH | HIRHAM5 | [EUR, AFR] | | IPSL_IPSL-CM5A-LR_r1i1p1_GERICS_REMO2009_v1 | IPSL-CM5A-LR | REMO2009 | [AFR] | | IPSL_IPSL-CM5A-LR_r1i1p1_IITM_RegCM4-4_v5 | IPSL-CM5A-LR | RegCM4-4 | [WAS] | | IPSL_IPSL-CM5A-LR_r1i1p1_RU-CORE_RegCM4-3_v4 | IPSL-CM5A-LR | RegCM4-3 | [SEA] | | IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 | IPSL-CM5A-MR | HIRHAM5 | [EUR] | | IPSL_IPSL-CM5A-MR_r1i1p1_GERICS_REMO2015_v1 | IPSL-CM5A-MR | REMO2015 | [EUR] | | IPSL_IPSL-CM5A-MR_r1i1p1_IPSL_WRF381P_v1 | IPSL-CM5A-MR | WRF381P | [EUR] | | IPSL_IPSL-CM5A-MR_r1i1p1_KNMI_RACMO22E_v1 | IPSL-CM5A-MR | RACMO22E | [EUR] | | IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v1 | IPSL-CM5A-MR | RCA4 | [EUR, AFR, CAM] | | IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v2 | IPSL-CM5A-MR | RCA4 | [WAS] | | IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v3 | IPSL-CM5A-MR | RCA4 | [SAM] | | | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO22T_v1 ICHEC_EC-EARTH_r12i1p1_MOHC_HadREM3-GA7-05_v1 ICHEC_EC-EARTH_r12i1p1_MPI-CSC_REMO2009_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4-SN_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v2 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v3 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v3 ICHEC_EC-EARTH_r1i1p1_KNMI_RACMO21P_v1 ICHEC_EC-EARTH_r1i1p1_RU-CORE_RegCM4-3_v4 ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v1 ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v2 IPSL_IPSL-CM5A-LR_r1i1p1_GERICS_REMO2009_v1 IPSL_IPSL-CM5A-LR_r1i1p1_ITM_RegCM4-4_v5 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_SMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_IPSL_WRF381P_v1 IPSL_IPSL-CM5A-MR_r1i1p1_IPSL_WRF381P_v1 IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v1 IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v1 IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v2 | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO22T_v1 ICHEC_EC-EARTH_r12i1p1_MOHC_HadREM3-GA7-05_v1 ICHEC_EC-EARTH_r12i1p1_MPI-CSC_REMO2009_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4-SN_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v1 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v2 EC-EARTH ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v2 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v3 ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4_v3 ICHEC_EC-EARTH_r1i1p1_KNMI_RACMO21P_v1 ICHEC_EC-EARTH_r1i1p1_RU-CORE_RegCM4-3_v4 ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v1 ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5_v2 EC-EARTH IPSL_IPSL-CM5A-LR_r1i1p1_GERICS_REMO2009_v1 IPSL_IPSL-CM5A-LR_r1i1p1_IITM_RegCM4-4_v5 IPSL_IPSL-CM5A-LR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_DMI_HIRHAM5_v1 IPSL_IPSL-CM5A-MR_r1i1p1_IPSL_WRF381P_v1 IPSL_IPSL-CM5A-MR IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v1 IPSL_IPSL-CM5A-MR IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v2 IPSL-CM5A-MR IPSL_IPSL-CM5A-MR_r1i1p1_SMHI_RCA4_v2 IPSL-CM5A-MR | ICHEC_EC-EARTH_r12i1p1_KNMI_RACMO22T_v1 EC-EARTH | | 127 | MIROC_MIROC5_r1i1p1_CSIRO_CCAM-2008_v1 | MIROC5 | CCAM-2008 | [AUS] | |-------|--------------------------------------------------------|------------|-----------------------|------------------------------------------| | 128 | MIROC_MIROC5_r1i1p1_GERICS_REMO2009_v1 | MIROC5 | REMO2009 | [AFR] | | 129 | MIROC_MIROC5_r1i1p1_ORNL_RegCM4-7_v0 | MIROC5 | RegCM4-7 | [WAS] | | 130 | MIROC_MIROC5_r1i1p1_SMHI_RCA4_v1 | MIROC5 | RCA4 | [AFR, CAM] | | 131 | MIROC_MIROC5_r1i1p1_SMHI_RCA4_v2 | MIROC5 | RCA4 | [WAS] | | 132 | MIROC_MIROC5_r1i1p1_SMHI_RCA4_v3 | MIROC5 | RCA4 | [SAM] | | 133 | MOHC_HadGEM2-ES_r1i1p1_CLMcom_CCLM4-8-17_v1 | HadGEM2-ES | CCLM4-8-17 | [EUR, AFR] | | 134 | MOHC_HadGEM2-ES_r1i1p1_CLMcom_CCLM5-0-2_v1 | HadGEM2-ES | CCLM5-0-2 | [EAS] | | 135 l | MOHC_HadGEM2-ES_r1i1p1_CLMcom_ETH-COSMO-crCLIM-v1-1_v1 | HadGEM2-ES | ETH-COSMO-crCLIM-v1-1 | [EUR] | | 136 | MOHC_HadGEM2-ES_r1i1p1_CLMcom_HZG-CCLM5-0-15_v1 | HadGEM2-ES | HZG-CCLM5-0-15 | [AUS] | | 137 | MOHC_HadGEM2-ES_r1i1p1_CLMcom_KIT-CCLM5-0-15_v1 | HadGEM2-ES | KIT-CCLM5-0-15 | [AFR] | | 138 | MOHC_HadGEM2-ES_r1i1p1_CNRM_ALADIN63_v1 | HadGEM2-ES | ALADIN63 | [EUR] | | 139 | MOHC_HadGEM2-ES_r1i1p1_DMI_HIRHAM5_v2 | HadGEM2-ES | HIRHAM5 | [EUR] | | 140 | MOHC_HadGEM2-ES_r1i1p1_GERICS_REMO2009_v1 | HadGEM2-ES | REMO2009 | [AFR] | | 141 | MOHC_HadGEM2-ES_r1i1p1_GERICS_REMO2015_v1 | HadGEM2-ES | REMO2015 | [EAS, AUS, SEA, NAM, SAM, AFR, CAM, WAS] | | 142 | MOHC_HadGEM2-ES_r1i1p1_ICTP_RegCM4-3_v4 | HadGEM2-ES | RegCM4-3 | [SAM, CAM] | | 143 | MOHC_HadGEM2-ES_r1i1p1_ICTP_RegCM4-4_v0 | HadGEM2-ES | RegCM4-4 | [EAS] | | 144 | MOHC_HadGEM2-ES_r1i1p1_ICTP_RegCM4-6_v1 | HadGEM2-ES | RegCM4-6 | [EUR] | | 145 | MOHC_HadGEM2-ES_r1i1p1_ICTP_RegCM4-7_v0 | HadGEM2-ES | RegCM4-7 | [AUS, SEA, SAM, AFR, CAM] | | 146 | MOHC_HadGEM2-ES_r1i1p1_IPSL_WRF381P_v1 | HadGEM2-ES | WRF381P | [EUR] | | 147 | MOHC_HadGEM2-ES_r1i1p1_ISU_RegCM4_v4-4-rc8 | HadGEM2-ES | RegCM4 | [NAM] | | 148 | MOHC_HadGEM2-ES_r1i1p1_KNMI_RACMO21P_v2 | HadGEM2-ES | RACMO21P | [ANT] | |-----|---------------------------------------------------------|------------|-----------------------|------------------------------------------| | 149 | MOHC_HadGEM2-ES_r1i1p1_KNMI_RACMO22E_v2 | HadGEM2-ES | RACMO22E | [EUR] | | 150 | MOHC_HadGEM2-ES_r1i1p1_KNMI_RACMO22T_v2 | HadGEM2-ES | RACMO22T | [AFR] | | 151 | MOHC_HadGEM2-ES_r1i1p1_MOHC_HadREM3-GA7-05_v1 | HadGEM2-ES | HadREM3-GA7-05 | [EUR] | | 152 | MOHC_HadGEM2-ES_r1i1p1_NCAR_WRF_v3-5-1 | HadGEM2-ES | WRF | [NAM] | | 153 | MOHC_HadGEM2-ES_r1i1p1_RU-CORE_RegCM4-3_v4 | HadGEM2-ES | RegCM4-3 | [SEA] | | 154 | MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4_v1 | HadGEM2-ES | RCA4 | [SEA, EUR, AFR, CAM] | | 155 | MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4_v2 | HadGEM2-ES | RCA4 | [WAS] | | 156 | MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4_v3 | HadGEM2-ES | RCA4 | [SAM] | | 157 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_CCLM4-8-17-CLM3-5_v1 | MPI-ESM-LR | CCLM4-8-17-CLM3-5 | [AUS] | | 158 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_CCLM4-8-17_v1 | MPI-ESM-LR | CCLM4-8-17 | [EUR, AFR] | | 159 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_CCLM5-0-2_v1 | MPI-ESM-LR | CCLM5-0-2 | [EAS] | | 160 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_ETH-COSMO-crCLIM-v1-1_v1 | MPI-ESM-LR | ETH-COSMO-crCLIM-v1-1 | [EUR, WAS] | | 161 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_HZG-CCLM5-0-15_v1 | MPI-ESM-LR | HZG-CCLM5-0-15 | [AUS] | | 162 | MPI-M_MPI-ESM-LR_r1i1p1_CLMcom_KIT-CCLM5-0-15_v1 | MPI-ESM-LR | KIT-CCLM5-0-15 | [AFR] | | 163 | MPI-M_MPI-ESM-LR_r1i1p1_CNRM_ALADIN63_v1 | MPI-ESM-LR | ALADIN63 | [EUR] | | 164 | MPI-M_MPI-ESM-LR_r1i1p1_DMI_HIRHAM5_v1 | MPI-ESM-LR | HIRHAM5 | [EUR] | | 165 | MPI-M_MPI-ESM-LR_r1i1p1_GERICS_REMO2015_v1 | MPI-ESM-LR | REMO2015 | [EAS, AUS, SEA, NAM, SAM, AFR, CAM, WAS] | | 166 | MPI-M_MPI-ESM-LR_r1i1p1_ICTP_RegCM4-6_v1 | MPI-ESM-LR | RegCM4-6 | [EUR] | | 167 | MPI-M_MPI-ESM-LR_r1i1p1_KNMI_RACMO22E_v1 | MPI-ESM-LR | RACMO22E | [EUR] | | 168 | MPI-M_MPI-ESM-LR_r1i1p1_MGO_RRCM_v1 | MPI-ESM-LR | RRCM | [ARC] | | 169 | MPI-M_MPI-ESM-LR_r1i1p1_MOHC_HadREM3-GA7-05_v1 | MPI-ESM-LR | HadREM3-GA7-05 | [EUR] | |-----|------------------------------------------------------|------------|-----------------------|---------------------------| | 170 | MPI-M_MPI-ESM-LR_r1i1p1_MPI-CSC_REMO2009_v1 | MPI-ESM-LR | REMO2009 | [EUR, SAM, AFR, WAS] | | 171 | MPI-M_MPI-ESM-LR_r1i1p1_NCAR_RegCM4_v4-4-rc8 | MPI-ESM-LR | RegCM4 | [NAM] | | 172 | MPI-M_MPI-ESM-LR_r1i1p1_OURANOS_CRCM5_v1 | MPI-ESM-LR | CRCM5 | [NAM] | | 173 | MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4-SN_v1 | MPI-ESM-LR | RCA4-SN | [ARC] | | 174 | MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4_v1 | MPI-ESM-LR | RCA4 | [ARC, EUR, AFR, CAM] | | 175 | MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4_v1a | MPI-ESM-LR | RCA4 | [EUR] | | 176 | MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4_v2 | MPI-ESM-LR | RCA4 | [WAS] | | 177 | MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4_v3 | MPI-ESM-LR | RCA4 | [SAM] | | 178 | MPI-M_MPI-ESM-LR_r1i1p1_UA_WRF_v3-5-1 | MPI-ESM-LR | WRF | [NAM] | | 179 | MPI-M_MPI-ESM-LR_r1i1p1_UQAM_CRCM5_v1 | MPI-ESM-LR | CRCM5 | [NAM, AFR] | | 180 | MPI-M_MPI-ESM-LR_r2i1p1_SMHI_RCA4_v1 | MPI-ESM-LR | RCA4 | [EUR] | | 181 | MPI-M_MPI-ESM-LR_r3i1p1_GERICS_REMO2015_v1 | MPI-ESM-LR | REMO2015 | [EUR] | | 182 | MPI-M_MPI-ESM-MR_r1i1p1_ICTP_RegCM4-3_v4 | MPI-ESM-MR | RegCM4-3 | [CAM] | | 183 | MPI-M_MPI-ESM-MR_r1i1p1_ICTP_RegCM4-4_v0 | MPI-ESM-MR | RegCM4-4 | [EAS] | | 184 | MPI-M_MPI-ESM-MR_r1i1p1_ICTP_RegCM4-7_v0 | MPI-ESM-MR | RegCM4-7 | [AUS, SEA, SAM, AFR, CAM] | | 185 | MPI-M_MPI-ESM-MR_r1i1p1_IITM_RegCM4-4_v5 | MPI-ESM-MR | RegCM4-4 | [WAS] | | 186 | MPI-M_MPI-ESM-MR_r1i1p1_ORNL_RegCM4-7_v0 | MPI-ESM-MR | RegCM4-7 | [WAS] | | 187 | MPI-M_MPI-ESM-MR_r1i1p1_RU-CORE_RegCM4-3_v4 | MPI-ESM-MR | RegCM4-3 | [SEA] | | 188 | MPI-M_MPI-ESM-MR_r1i1p1_UQAM_CRCM5_v1 | MPI-ESM-MR | CRCM5 | [NAM, ARC] | | 189 | NCC_NorESM1-M_r1i1p1_CLMcom_ETH-COSMO-crCLIM-v1-1_v1 | NorESM1-M | ETH-COSMO-crCLIM-v1-1 | [EUR, WAS] | | 190 | NCC_NorESM1-M_r1i1p1_CLMcom_HZG-CCLM5-0-15_v1 | NorESM1-M | HZG-CCLM5-0-15 | [AUS] | | NCC_NorESM1-M_r1i1p1_CLMcom_KIT-CCLM5-0-15_v1 | NorESM1-M | KIT-CCLM5-0-15 | [AFR] | |-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | NCC_NorESM1-M_r1i1p1_CNRM_ALADIN63_v1 | NorESM1-M | ALADIN63 | [EUR] | | NCC_NorESM1-M_r1i1p1_CSIRO_CCAM-2008_v1 | NorESM1-M | CCAM-2008 | [AUS] | | NCC_NorESM1-M_r1i1p1_DMI_HIRHAM5_v3 | NorESM1-M | HIRHAM5 | [EUR] | | NCC_NorESM1-M_r1i1p1_GERICS_REMO2015_v1 | NorESM1-M | REMO2015 | [EAS, AUS, SEA, NAM, EUR, SAM,<br>AFR, CAM, WAS] | | NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-4_v0 | NorESM1-M | RegCM4-4 | [EAS] | | NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-7_v0 | NorESM1-M | RegCM4-7 | [AUS, SEA, SAM, AFR] | | NCC_NorESM1-M_r1i1p1_IPSL_WRF381P_v1 | NorESM1-M | WRF381P | [EUR] | | NCC_NorESM1-M_r1i1p1_KNMI_RACMO22E_v1 | NorESM1-M | RACMO22E | [EUR] | | NCC_NorESM1-M_r1i1p1_MOHC_HadREM3-GA7-05_v1 | NorESM1-M | HadREM3-GA7-05 | [EUR] | | NCC_NorESM1-M_r1i1p1_ORNL_RegCM4-7_v0 | NorESM1-M | RegCM4-7 | [WAS] | | NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v1 | NorESM1-M | RCA4 | [ARC, EUR, AFR, CAM] | | NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v2 | NorESM1-M | RCA4 | [WAS] | | NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v3 | NorESM1-M | RCA4 | [SAM] | | NCC_NorESM1-M_r1i1p1_ULg_MAR311_v1 | NorESM1-M | MAR311 | [ANT] | | NOAA-GFDL_GFDL-ESM2G_r1i1p1_GERICS_REMO2009_v1 | GFDL-ESM2G | REMO2009 | [AFR] | | NOAA-GFDL_GFDL-ESM2M_r1i1p1_CSIRO_CCAM-2008_v1 | GFDL-ESM2M | CCAM-2008 | [AUS] | | NOAA-GFDL_GFDL-ESM2M_r1i1p1_ICTP_RegCM4-7_v0 | GFDL-ESM2M | RegCM4-7 | [CAM] | | NOAA-GFDL_GFDL-ESM2M_r1i1p1_IITM_RegCM4-4_v5 | GFDL-ESM2M | RegCM4-4 | [WAS] | | NOAA-GFDL_GFDL-ESM2M_r1i1p1_ISU_RegCM4_v4-4-rc8 | GFDL-ESM2M | RegCM4 | [NAM] | | NOAA-GFDL_GFDL-ESM2M_r1i1p1_NCAR_WRF_v3-5-1 | GFDL-ESM2M | WRF | [NAM] | | | NCC_NorESM1-M_r1i1p1_CNRM_ALADIN63_v1 NCC_NorESM1-M_r1i1p1_CSIRO_CCAM-2008_v1 NCC_NorESM1-M_r1i1p1_DMI_HIRHAM5_v3 NCC_NorESM1-M_r1i1p1_GERICS_REMO2015_v1 NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-4_v0 NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-7_v0 NCC_NorESM1-M_r1i1p1_IPSL_WRF381P_v1 NCC_NorESM1-M_r1i1p1_KNMI_RACMO22E_v1 NCC_NorESM1-M_r1i1p1_MOHC_HadREM3-GA7-05_v1 NCC_NorESM1-M_r1i1p1_ORNL_RegCM4-7_v0 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v1 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v2 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v3 NCC_NorESM1-M_r1i1p1_ULg_MAR311_v1 NOAA-GFDL_GFDL-ESM2G_r1i1p1_GERICS_REMO2009_v1 NOAA-GFDL_GFDL-ESM2M_r1i1p1_ICTP_RegCM4-7_v0 NOAA-GFDL_GFDL-ESM2M_r1i1p1_ICTP_RegCM4-7_v0 NOAA-GFDL_GFDL-ESM2M_r1i1p1_IITM_RegCM4-4_v5 NOAA-GFDL_GFDL-ESM2M_r1i1p1_IITM_RegCM4-4_v5 | NCC_NorESM1-M_r1i1p1_CNRM_ALADIN63_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_CSIRO_CCAM-2008_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_DMI_HIRHAM5_v3 NorESM1-M NCC_NorESM1-M_r1i1p1_GERICS_REMO2015_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-4_v0 NorESM1-M NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-7_v0 NorESM1-M NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-7_v0 NorESM1-M NCC_NorESM1-M_r1i1p1_IPSL_WRF381P_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_KNMI_RACM022E_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_MOHC_HadREM3-GA7-05_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_ORNL_RegCM4-7_v0 NorESM1-M NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v1 NorESM1-M NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v2 NorESM1-M NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v2 NorESM1-M NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v3 NorESM1-M NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v3 NorESM1-M NCC_NorESM1-M_r1i1p1_SMR0_CAM_v3 NorESM1-M NCA-GFDL_GFDL-ESM2M_r1i1p1_GERICS_REMO2009_v1 GFDL-ESM2M NOAA-GFDL_GFDL-ESM2M_r1i1p1_ICTP_RegCM4-7_v0 GFDL-ESM2M NOAA-GFDL_GFDL-ESM2M_r1i1p1_ITM_RegCM4-4_v5 GFDL-ESM2M < | NCC_NorESM1-M_r1i1p1_CNRM_ALADIN63_v1 NorESM1-M ALADIN63 NCC_NorESM1-M_r1i1p1_CSIRO_CCAM-2008_v1 NorESM1-M CCAM-2008 NCC_NorESM1-M_r1i1p1_DMI_HIRHAM5_v3 NorESM1-M HIRHAM5 NCC_NorESM1-M_r1i1p1_GERICS_REMO2015_v1 NorESM1-M REMO2015 NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-4_v0 NorESM1-M RegCM4-4 NCC_NorESM1-M_r1i1p1_ICTP_RegCM4-7_v0 NorESM1-M RegCM4-7 NCC_NorESM1-M_r1i1p1_IPSL_WRF381P_v1 NorESM1-M WRF381P NCC_NorESM1-M_r1i1p1_IRNMI_RACM022E_v1 NorESM1-M RACM022E NCC_NorESM1-M_r1i1p1_MOHC_HadREM3-GA7-05_v1 NorESM1-M HadREM3-GA7-05 NCC_NorESM1-M_r1i1p1_ORNL_RegCM4-7_v0 NorESM1-M RegCM4-7 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v1 NorESM1-M RCA4 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v1 NorESM1-M RCA4 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v2 NorESM1-M RCA4 NCC_NorESM1-M_r1i1p1_SMHI_RCA4_v3 NorESM1-M RCA4 NCC_NorESM1-M_r1i1p1_Ug_MAR311_v1 NorESM1-M RCA4 NCA-GFDL_GFDL-ESM2G_r1i1p1_GERICS_REM02009_v1 GFDL-ESM2G REM02009 NOAA-GFDL | | 212 | NOAA-GFDL_GFDL-ESM2M_r1i1p1_OURANOS_CRCM5_v1 | GFDL-ESM2M | CRCM5 | [NAM, CAM] | |-----|----------------------------------------------|------------|-------|------------| | 213 | NOAA-GFDL_GFDL-ESM2M_r1i1p1_SMHI_RCA4_v1 | GFDL-ESM2M | RCA4 | [AFR, CAM] | | 214 | NOAA-GFDL_GFDL-ESM2M_r1i1p1_SMHI_RCA4_v2 | GFDL-ESM2M | RCA4 | [WAS] | | 215 | NOAA-GFDL_GFDL-ESM2M_r1i1p1_SMHI_RCA4_v3 | GFDL-ESM2M | RCA4 | [SAM] | **Table A1.1.** Simulations (members) for the different experiments/domains (last column) provided by the Atlas Monthly v1 dataset. ECMWF - Shinfield Park, Reading RG2 9AX, UK Contact: <a href="https://support.ecmwf.int/">https://support.ecmwf.int/</a>