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ABSTRACT8

The European Centre for Medium range weather forecast (ECMWF) on behalf of the Copernicus Emergency Management
Service (CEMS) has recently widened the fire danger data offering in the Climate Data Store (CDS) to include a set of fire
danger forecasts with lead times up to 7 months. The system incorporates fire danger indices for three different models
developed in Canada, United States and Australia. The indices are calculated using ECMWF Seasonal Forecasting System
5 (SEAS5) and verified against the relevant reanalysis of fire danger based on the ECMWF Re-Analysis (ERA5). The data
set is made openly available for the period 1981 to 2022 and will be updated regularly providing a resource to assess the
predictability of fire weather at the seasonal time scale. The data set complements the availability of real time seasonal forecast
provided by the Copernicus Emergency Management Service in real time.
Globally anomalous conditions for fire weather can be predicted with confidence 1 month ahead. In some regions the prediction
can be extended to 2 months ahead. In most situations beyond this horizon, forecasts do not beat climatology. However an
extended predictability window, up to 6-7 months ahead is possible when anomalous fire weather is the results of large scale
phenomena such as the El Niño Southern Oscillation and the Indian Ocean Dipole, often conducive of extensive fire burning in
regions such as Indonesia and Australia.

9

Background & Summary10

Wildfires are processes that can be both beneficial and deleterious for the environment. On the one hand, uncontrolled fires11

make it often in the news as environmental disasters, causing destruction and loss of lives. On the other hand, fires have12

been happening since hundreds of million years ago (according to tests on fossil charcoal,1) and have a crucial role in the13

evolutionary path of many ecosystems2. In addition, controlled fires are very efficient for clearing agricultural land and for fire14

prevention and management, e.g. controlled burns create a discontinuity in the land depriving fires from fuel and interrupting15

potential propagation pathways3. Hence the importance of managing wildfires and prevent as much as possible that controlled16

and accidental burns rage out of control. Forecasting fire danger is key in fire prevention and protection measures as it improves17

readiness of fire professionals and allows timely and efficient allocation of resources4.18

Scientific literature shows that, besides well established fire danger forecasts with lead times of a few days5, 6, skilful19

predictions of fire danger is possible up to the seasonal time scale for Mediterranean Europe7, United States8, 9 and Asia10.20

Seasonal forecasting of fire weather conditions throughout the world have been found to correlate with large scale climate21

patterns such as the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole, implying that fire weather conditions22

can be predicted fairly accurately for various seasons and regions11. In Europe, forecasts for the eastern and south-eastern areas23

have shown to be fairly reliable ’paving the way to their operational applicability’7.24

The soil moisture and heat wave mechanism has been identified as an important source of predictability in Europe, along25

with atmospheric circulation patterns such as ENSO12 and other atmospheric conditions such as triggering trade-offs between26

relative humidity and temperature7, 13, 14, although the latter two deserves further investigations.27

In 2018, ECMWF in collaboration with the Copernicus Emergency Management Service (CEMS), established the ECMWF28

Global Fire Forecasting (GEFF) system. This is an operational system that provides the fire community with pre-calculated fire29

danger indices based on models developed in Canada (Fire Weather Index,15), United States (U.S. Forest Service National30

Fire-Danger Rating System,16 and Australia (McArthur Mark 5 Rating System,17). Using ECMWF weather forcings, GEFF31

produces fire danger reanalysis18, 19 as well as forecast products5, 6. A set of seasonal forecast from SEAS5 is now available32

and span the period 1981 to 2022. The dataset will be updated regularly providing an up-to date resource to understand the33

predictability of landscape flammability regionally and through different decades. Seasonal forecast have monthly initial date34

and forecast horizon of 216 days corresponding to 7 months.35

This data descriptor reports on the available dataset and makes a first assessment of the skill of the fire danger seasonal36



prediction using the available fire weather reanalysis data-set as reference19. The new dataset is particularly important to37

help decision makers and forestry agencies prepare for periods of potentially high fire activities. It is made available as a38

probabilistic model output, allowing to quantify uncertainties in the fire danger estimations. The seasonal estimates of fire39

indices are released under the Copernicus open data license, through the Copernicus Climate Data Store (CDS).40

Methods41

Seasonal forecasting is the attempt to provide useful information about the "climate" that can be expected in the coming months.42

A seasonal forecast is not a weather forecast: weather can be considered as a snapshot of continually changing atmospheric43

conditions, whereas climate is better considered as the statistical average of the weather conditions occurring in each season.44

The principal aim of seasonal fire danger forecast is then to predict the range of possible values which is most likely to occur45

during the next season. For the fire danger metrics this is achieved by coupling the GEFF model with ECMWF SEAS5 seasonal46

weather prediction outputs.47

SEAS5 is a coupled atmosphere ocean system where the atmospheric component is the ECMWF IFS (Integrated Forecast48

System) model version 43r120. This model version was introduced for medium-range forecasting on 22 November 2016.49

The horizontal resolution used for seasonal forecasts is T319 (0.4x0.4 degrees). SEAS5 uses the community ocean model50

NEMO (Nucleus for European Modelling of the Ocean) with a resolution of 0.25 degrees and 75 vertical levels (ocean model51

configuration ORCA025z75). The seasonal forecasts consist of a 51-member ensemble. The ensemble is constructed by52

combining the 5-member ensemble ocean analysis with SST perturbations and the activation of stochastic physics. The forecasts53

run for 7 months20.54

Any coupled model that runs in seasonal forecast mode suffers from bias - the climate of the model forecasts differs to55

a greater or lesser extent from the observed climate21. Since seasonal forecast signals are often small, this bias needs to be56

considered, and must be estimated from a previous set of forecasts. Also, it is vital that users know the skill of a seasonal57

forecasting system if they are to make good use of it in real applications, and again this requires a set of forecasts from earlier58

dates.59

A set of re-forecasts (otherwise known as hindcasts or back integrations or just referred as climatology) are thus made60

starting on the 1st of every month for the years 1981-2016. They are identical to the real-time forecasts in every way, except61

that the ensemble size is only 25 rather than 51. From 2016 to 2022 the ECWMF seasonal forecast provides the full range of 5162

ensemble members.63

The set of 1981-2022 seasonal forecast were used as atmospheric forcings to generate fire danger seasonal predictions64

using the GEFF model. The GEFF model is open source and available from a public repository under an APACHE2 license.65

The current version is 4.1. Data are archived in the Copernicus Climate data Store with several advantages: open access via a66

user friendly web interface and bulk access via a convenient API, integration with the CDS toolbox for performing server-side67

operations as well as shared visualisation and data analysis tools. Users can browse the available data catalogue without68

logging in, however registering an account is mandatory to download data. The CDS has a user-friendly web interface, ideal for69

the retrieval of small datasets while for larger data volumes users are encouraged to send data requests using the CDS API70

(https://cds.climate.copernicus.eu/api-how-to).71

If users intend to retrieve the hindcast to asses long-term averages, the transfer of such large data volume could become72

prohibitive. In this case the use of the CDS toolbox is highly recommended and an example application is provided in the73

‘usage notes’ section.74

Data Records75

The fire danger seasonal forecast dataset has a global coverage and a spatial resolution of about 0.25 degrees (about 35 km).76

Natively, data are laid out over an octahedral reduced Gaussian grid (O320), and archived as GRIB2, a standard format77

published by the World Meteorological Organisation22. Users can also request data in NetCDF format which implies an78

internal remapping data transformation. Data in NetCDF format are on a regular unprojected grid with spherical coordinates79

expressed in decimal degrees (EPSG:4326). Latitudes span the range from -90 to +90 degrees and are referenced to the equator.80

Longitudes are in the range from 0 to 360 degrees, referenced to the Greenwich Prime Meridian, consistently with other81

ECMWF products. Forecasts are issued monthly, on the 1st day of each month, with a leadtime of 216 days (about 7 months).82

The GEFF model, driven by SEAS5, outputs fire indices based on three systems:83

• The Canadian Fire Weather Index15;84

• The U.S. Forest Service National Fire-Danger Rating System16;85

• The Australian McArthur Mark 5 Rating System17.86
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For an in-depth description of the GEFF model, fire rating systems and indices, the reader is reminded to5, 6. In the87

subsections below, the three systems are briefly described with the list of the available indices and subindices provided.88

The FWI system89

The Canadian FWI system describes the fire weather, the complex atmospheric conditions that can lead to a dangerous fire. It90

quantifies potential fire danger using temperature, relative humidity, wind speed, and 24-hr accumulated precipitation values91

measured at noon Local Standard Time (LST). The indices include measures of fuel moisture (Fine Fuel Moisture Code, Duff92

Moisture Code, and Drought Code), fire behavior indices (Initial Spread Index, Build Up Index, and Fire Weather Index) and93

indices related to ease of fire suppression (Danger Severity Rating). This is the index used by Environment Canada to assess94

short range fire danger and also monthly and seasonal fire danger outlooks.95

The NFDRS system96

The National Fire Danger Rating System (NFDRS) is widely used in the U.S. The fire danger is rated accordingly to static97

maps of fuel type and topography and considers weather as the main driver. It uses temperature, precipitation, relative humidity98

and cloud cover to estimate the moisture content of dead and live vegetation at different depth in the fuel bed. In turn, these99

allow to calculate the Ignition Component and contribute to the other indices such as the Spread Component, Energy Release100

Component and Burning Index. The National Fire Danger Rating System (NFDRS) is used in the U.S. by all federal and most101

state agencies (e.g. The U.S. Department of Agriculture, The National Wildfire Coordination Group, etc.).102

The MARK5 system103

The McArthur (MARK5) fire danger rating system is mostly used in Australia. It uses precipitation, temperature, relative104

humidity and wind speed to estimate the behaviour of fires burning on a typical Australian landscape. At first the Drought105

Factor is calculate to represent the effect of temperatures and precipitation on fuel availability. The drought factor is then used106

to calculate the Keetch-Byram Drought Index which measure soil moisture deficit. Lastly, the Fire danger Index, is calculated107

to quantify probability of fire occurrence, its intensity, and related difficulty of suppression. The McArthur (MARK5) fire108

danger rating system is mostly used in Australia, by rural fire authorities.109

Technical Validation110

Global skill111

Seasonal fire danger forecasting is rather novel because, although the link between long-term fluctuations of Sea Surface112

Temperature and seasonal precipitation/drought patterns are scientifically proven in the tropics and to a lesser extent in the extra-113

tropics23, the implications on seasonal fire danger is largely under-explored. As fire danger is, by definition, weather-driven a114

link with SST is expected to be detectable in terms of long-term averages (typically over one to three month).115

As seasonal forecast becomes more skilful, they are gaining relevance as support to decision-making processes in a wide116

range of sectors, such as energy, agriculture, water and risk management?. A first assessment of the forecast skill is then117

provided to understand the usability of this data-set in a real time applications. The global skill metrics presented are provided118

as monthly means and using the ensemble mean as best prediction outcome. Also the FWI is chosen as an example as this is119

one of the most used metric to predict fire danger in global systems24, 25. Results are similar for other metrics.120

Both bias and root mean square error are used for assessing model performance (figure 1 and 2), as they capture different121

aspects. Bias helps identify consistent deviations from the true values, while RMSE provides an overall measure of accuracy,122

considering both bias and the spread of errors. They provide insights into the systematic errors and overall quality of the123

model’s predictions compared to the reference value identified as ERA5 fire danger reanalysis26. A positive bias indicates an124

over-prediction the opposite for negative bias. Biases tend to increase for more distant prediction while they have similar spatial125

distribution as they typically diagnose the systematic deficiency of the underlying weather forecast model.126

When the bias and the RMSE are of the same magnitude of the signal of interest which is typically in the order of 10 units127

for the fire weather index, then using the prediction is equivalent to employing a climatology. It is then evident from figures 1128

and 2 that on average after month 2 most of the areas interested by changes in landscape flammability display errors that would129

make the direct use of fire danger value unsuitable for advance warnings if based on warning levels.130

To extend the prediction seasonal forecasts often utilize the concept of anomalies. Anomalies are deviations from the131

long-term average conditions and are useful to identify the early establishment of danger conditions. The Anomaly Correlation132

Coefficient (ACC) is one of the most widely used measures in the verification of spatial fields. It expresses the spatial correlation133

between a forecast anomaly relative to climatology, and the verifying analysis anomaly relative to climatology. ACC represents134

a measure of how well the forecast anomalies have represented the observed anomalies and shows how well the predicted135

values from a forecast model "fit" with the real-life data. ACC values lie between +1 and -1. Where ACC values approach +1136

there is good agreement and the forecast anomaly has had value. Below around 0.5 the forecast errors are similar to those of a137
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forecast based on a climatological average. When ACC is around 0 there is poor agreement and the forecast has had no value.138

Figure 3 represents the anomaly correlation for the fwi seasonal forecast system during the hindcast period (1981-2022) for all139

the forecasts and valid for month 1 to 4. It highlights that there is good skill in detecting anomalous conditions a month ahead140

almost everywhere. In few regions anomaly conditions can be predicted 2 months.141

Extended predictability142

El Niño Soutern Oscillation (ENSO) is a climate pattern characterized by the warming of the surface waters in the central and143

eastern tropical Pacific Ocean and often leads to a shift in rainfall patterns, resulting in reduced precipitation in Southeast Asia,144

including Indonesia. This can create drier-than-normal conditions, especially in peatland areas, making them more susceptible145

to fires27. The conditions established by strong El Niño conditions exacerbates landscape flammability but are human activities146

that play a significant role in igniting fires. In Indonesia, particularly in the regions of Sumatra and Kalimantan, land clearing147

practices such as slash-and-burn agriculture, illegal logging, and peatland drainage for agriculture have been responsible for148

extensive burning in the past28. Release of large amounts of smoke and pollutants into the atmosphere have affected air quality149

not only within Indonesia but also in neighboring countries, such as Malaysia and Singapore, generating international health150

emergencies29.151

The establishment of a positive or negative ENSO are usually monitored using a Multivariate index (MVI) obtained by152

extracting the leading combined Empirical Orthogonal Function (EOF) of five different variables over the tropical Pacific basin153

(30S–30N and 100E–70W). During strong positive and negative ENSO seasonal prediction of fire weather is enhanced up to 7154

ahead (figure 4) as a results of the enhanced predictability of these large scale patterns at the seasonal time scale30. Efforts to155

mitigate the impact of fires during ENSO events in Indonesia could therefore benefit from an early warning system at this time156

scale as they could be issued with sufficient advance time. This could help enforcing land management practices, implement157

fire prevention and suppression measures, and raise awareness about the environmental and health hazards associated with158

burnings31.159

A similar phenomenon is the Indian Ocean Dipole (IOD) that occurs in the Indian Ocean, characterized by the difference in160

sea surface temperatures (SST) between the western and eastern parts of the ocean. The IOD has been known to influence161

weather patterns in various regions, including southern and eastern parts of Australia. During positive IOD events, there is162

typically a reduction in rainfall in these regions, leading to drier-than-normal conditions. There is still debate if there is a direct163

influence between the IOD and the Australian fires as a clear signal is often hindered by changing land management practices,164

fuel availability, and human activities32. Figure 5 shows the FWI anomalies over South east Australia for the 2013 -2022 period165

in relation to the occurrence of the Indian Ocean Dipole as measured by the Dipole mode Index (DMI). The DMI is defined as166

the difference between the SST anomalies of Western (10S-10N and 50E-70E) and Eastern (10S-0N and 90E-110E) Equatorial167

Indian Ocean regions.168

The 2019-2020 Australian bushfire season is commonly referred to as the "Black Summer" in Australia. It was an169

exceptionally devastating and prolonged period of bushfires that occurred from late 2019 to early 2020. The fires had a severe170

impact on various parts of Australia, causing widespread destruction, loss of human lives, and significant damage to wildlife171

and the environment. The Black Summer fires were characterized by their unprecedented scale, intensity, and duration. They172

also occurred in a period of strong Indian Ocean Dipole which is a contributing factors to enhance the predictability of the173

anomalous fire danger conditions174

In the aftermath of the Black Summer fires, efforts were made to assess the damage, and implement measures to prevent175

and mitigate future fire seasons’ impacts. The 7 month predictability window for this extreme event could be relevant to help176

implementing sustainable practices to protect against future fire disasters.177

Usage Notes178

In this section, we describe two typical workflows to retrieve and explore seasonal data using exclusively the Copernicus CDS179

API and toolbox. In order to replicate the work, users should ahead over to the CDS website (https://cds.climate.180

copernicus.eu/cdsapp#!/home) and register an account (https://cds.climate.copernicus.eu/user/181

register?destination=%2F%23!%2Fhome). Once an account is created, and the user logs in, the seasonal fire182

forecasts can be found by typing relevant keywords in the search box, e.g. ‘fire danger indices seasonal data’. The web page183

dedicated to the seasonal fire forecasts is divided into three tabs: the ‘overview’ tab shows a concise description of the data; the184

‘download data’ tab contains a data request form; the ‘documentation’ tab contains in depth information about the dataset and185

originating systems. At the top of the page, another set of tabs allow users to explore other datasets, applications, requests and186

the toolbox.187
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Download global fire danger forecast maps188

The seasonal forecast of the Fire Weather Index issued on 2019-01-01 with 1 month lead time, are used as example files.189

Downloading these data is rather straight forward using the CDS web interface. The registered user needs to tick a few boxes to190

specify the index, period of interest and type of data, then click on a ‘Download’ button. For larger data requests, the use of the191

CDS API is recommended. Below an example script is provided.192

import cdsapi193

194

c = cdsapi.Client()195

196

c.retrieve(197

’cems-fire-seasonal-reforecast’,198

{199

’format’: ’grib’,200

’variable’: ’fire_weather_index’,201

’system_version’: ’4_1’,202

’year’: ’1991’,203

’month’: ’09’,204

’leadtime_hour’: [205

’12’, ’36’, ’60’,206

’84’, ’108’, ’132’,207

’156’, ’180’, ’204’,208

’228’, ’252’, ’276’,209

’300’, ’324’, ’348’,210

’372’, ’396’, ’420’,211

’444’, ’468’, ’492’,212

’516’, ’540’, ’564’,213

’588’, ’612’, ’636’,214

’660’, ’684’, ’708’,215

],216

},217

’download.grib’)218

Plotting data using the CDS toolbox219

To harness the power of the CDS, users are invited to familiarise with the CDS Toolbox. This is an interactive environment220

that allows to process and plot data without necessarily downloading them. This is particularly useful for users with limited221

bandwidth and/or unstable connections. The toolbox is designed to develop python applications that can be shared with other222

users, hence streamlining collaborative research and development. The script below can be pasted in the toolbox editor to223

generate a static map of the Fire Weather Index (as they are shown in the EFFIS and GWIS platform) that can be exported and224

used for reports and publications.225

import cdstoolbox as ct226

# Magics plot configuration dictionary227

MAP_CONFIG = {228

’contour’: {229

’contour_level_selection_type’: ’level_list’,230

’contour_level_list’: [0, 5.2, 11.2, 21.3, 38, 50, 150],231

’contour_shade’: ’on’,232

’contour_label’: ’off’,233

’contour_shade_method’: ’area_fill’,234

’contour_shade_colour_method’: ’list’,235

’contour_shade_colour_list’: [’#84F07F’, ’#FFEB3C’, ’#FFB00C’,236

’#FA4F00’, ’#B40000’, ’#280923’],237

’contour’: ’off’,238

’legend’: ’on’,239

},240
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’legend’: {241

’legend_text_colour’: ’black’,242

’legend_text_font_size’: 0.4,243

’legend_display_type’:’continuous’,244

}245

}246

# Initialise the application247

@ct.application(title=’Fire Weather Index 2020-07-01’, fullscreen=True)248

@ct.output.figure()249

def application():250

# Retrieve full resolution FWI data for a single date251

data = ct.catalogue.retrieve(252

’cems-fire-historical-v1’,253

{254

’product_type’: ’reanalysis’,255

’variable’: ’fire_weather_index’,256

’dataset_type’: ’consolidated_dataset’,257

’system_version’: ’4_1’,258

’year’: ’2020’,259

’month’: ’07’,260

’day’: ’01’,261

’grid’: ’0.5/0.5’,262

}263

)264

# Plot the data using the defined configuration MAP_CONFIG on a dynamic map265

plot = ct.map.plot(data, **MAP_CONFIG)266

267

return plot268

Code availability269

The fire indices have been generated using the open source GEFF modelling system v4.1(https://git.ecmwf.int/270

projects/CEMSF/repos/geff). The code to reproduce the results of this manuscript is openly available on a public271

repository: https://github.com/fdg10371/Jupyter_notebooks.272
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Figure 1. Bias as the average deviation or difference between the predicted monthly values and the observed values here
provided by reanalysis simulations. It provides information about the tendency of the model to consistently overestimate or
underestimate the true values. The average is performed for the ensemble mean and for all the months in the 1981-2020 period.
Panel a to f provides the 7 months forecast horizon available.
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Figure 2. Same as figure 1 but for the RMSE
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Figure 3. Anomaly correlation for the fwi seasonal forecast system during the hindcast period (1981-2022) for all the the
forecasts and valid for month 1 to 4.
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Figure 4. Prediction of fire danger anomalous conditions between 2013 and 2022 over Indonesia. Months are classified as
above or below the climatic mean using percentiles compared to the climatological mean. Observed anomalies are compared to
the forecast for increasingly longer lead times to highlight the predictability of anomalous conditions. Months outside the
traditional fire season are masked out.They are months with average FWI lower then a third of the maximum yearly value. The
ENSO index helps identifying years of strong positive and negative anomalies with established El Niño La Niña conditions.
These years corresponds to period of high predictability when anomalous conditions could be predicted up to 7 months before.
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Figure 5. Prediction of fire danger anomalous conditions between 2013 and 2022 over New Welsh in Australia. Months are
classified as above or below the climatic mean using percentiles. Observed anomalies are compared to the forecast for
increasingly longer lead times to highlight the predictability of anomalous fire weather conditions. Months outside the
traditional fire season are masked out.They are months with average FWI lower then a third of the maximum mean yearly value.
The Dipole mode index (DMI) helps identifying years of strong positive and negative anomalies with established Indian Ocean
Dipole conditions. DMI >0.5 were recorded during the 2019 Black summer when anomalous conditions could be predicted up
to 7 months before.
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