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Background

What is Soil Moisture Memory and Why is it important?

• Soil Moisture Memory (SMM): 

– The time SM returns to its equilibrium when anomaly occurs

– Transformation of EF-SM coupling regimes in the time 

domain

– Energy-limited regime → High frequency

– Water-limited regime → Low frequency

Loss Function of SM SM drydown curve

*

• Why is SMM important?

– SMM reflects the temporal variations (fluctuations) of 

soil moisture

– For climate characterization: a useful proxy for 

diagnosing near-surface hydrometeorological behaviors

– For model development: determining the boundary 

conditions for atmosphere model within the Earth System 

Model (ESM) framework

（McColl et al., 2017）

Simulated rainfall 

With LIS

Without

LIS

Observed Rainfall Simulated rainfall 

Without LIS

（Peters-Lidard, et al, 2006）
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Background

• How do LSMs perform in characterizing SMM?

– Generally, substantial differences exist between models 
and observations. Examples:

– Noah vs. SMAP

– Catchment vs. SMAP

• What’s the research gap?

– Seldom attention has been paid to SMM evaluation on 

different regimes →New methods needed

– Soil moisture simulation is model dependent, does the 

SMM bias commonly exist in all LSMs?

– Does the SMM bias have temporal variabilities since the 

observation data with longer spans available now?

– It is not clear how to improve the model based on these 

evaluations

（McColl, He et al, 2019）

（Shellito et al, 2018）
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Noah vs SMAP: comparison considering 

only the water-limited regime

Catchment vs SMAP: comparison considering 

both water-limited and energy-limited regimes



Research Aim
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• By answering the above questions, this study could:

- Provide useful information on data quality for data users, and provide feedbacks for 

the data producers to guide their development

- Provide implications for LSM development in terms of SMM and soil moisture 

simulation

• Using 5-year satellite soil moisture data to evaluate SMM performance of LSMs utilized 

in 6 major Reanalyses (i.e., GLDAS-Noah, GLDAS-Catchment, MERRA2, NCEP-FNL, 

ERA5 and JRA55)

- Compared to large-scale satellite observations, how do LSMs perform in simulating near-surface 

hydrometeorological characteristics under different soil moisture regimes?

- Despite the models’ spreads, do LSMs show common biases in their hydrometeorological 

behaviors? What might be the essential factors that contribute to them?



Data and Methods
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• A Hybrid Model to Quantify SMM at Different regimes

• Hybrid model for different stages of SMM process

– Using the empirical model for water-limited 

process as it can be resolved by the temporal 

resolution of current satellite observations

– Using the stochastic model for energy-limited 

process：as it cannot be resolved by the time 

interval of observations; also it is dominated by the 

precipitation events (noises)

SM timeseries, known

Wilting point

Water-limited SMM 𝝉𝑳

Energy-limited SMM 𝝉𝑺 (Details for the 

derivation are in supplementary materials)

Traditional methods cannot 
resolve the drydown processCan be resolved

Cannot be resolved by 
observations

（McColl, He et al, 2019）



Data and Methods
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• Proxies for diagnosing possible reasons contributing to model biases 

• Precipitation fraction (𝑭𝒑) related to 𝝉𝑺

– Definition: how much precipitation can be stored in soil layer

– Reflecting the terrestrial water cycle rate: Higher 𝐹𝑝 → more water 

stored in soil, less into runoff （McColl et al, 2017）

• Stage-II ET (𝑬𝑻𝑰𝑰) related to 𝝉𝑳

– A proxy for measuring ET flux limited by surface water availability

– Also serve as an application for ET estimation over bare soil areas

• Soil moisture thresholds: important parameters in LSMs

– Wilting point 𝜽𝒘: taken as multi-year mean 𝜃𝑑𝑑𝑒𝑛𝑑

– Critical point 𝜽𝒄: taken as multi-year mean 𝜃𝑑𝑑0



Data and Methods
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• Surface soil moisture and precipitation data from satellite observation and six

reanalyses are used 

• Satellite observation

– Surface soil moisture from SMAP

– 2015.4.1 – 2020. 3.31, 5 annual cycles, 3 day, 36km

– Precipitation from GPM

– 2015.4.1 – 2020. 3.31, 5 annual cycles, hourly, 36km

Dataset Agency LSMs

Online/Offl

ine

schemes

Surface 

Soil Layer 

Depth

Spatial

Resolution

Temporal 

Resolution

GLDAS-

CLSMv2.2

NASA

GES DISC
Catchment Offline 0-2cm 0.25° ×0.25° 1 day

GLDAS-

Noahv2.1

NASA

GES DISC
Noah Offline 0-10cm 0.25° ×0.25° 3 hours

MERRA2
NASA

GMAO
Catchment Coupled 0-5cm 0.625° ×0.5° 1hour

NCEP-FNL NCAR Noah Coupled 0-10cm 1° ×1° 6 hours

ERA5 ECMWF (H)TESSEL Coupled 0-10cm 0.25° ×0.25° 1 hour

JRA55 JMA SiB/SiB2 Coupled 0-2cm 0.5° ×0.5° 3hours

• Reanalyses Dataset
All data are aggregated to 

36km, 3-day resolution
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Results —— SMM from 5-year SMAP data

• Spatial pattern

– 𝜏𝑆 ：longer in arid areas

– 𝜏𝐿 ：longer in humid areas

– 𝜏𝑆 and 𝜏𝐿 are spatially anti-correlated, 
consistent to our previous studies

• Temporal variability

– SMM from SMAP is robust within 5 annual cycles 

both globally (below) and regionally (supplementary 

materials)
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Results ——SMM Comparison of multi-model mean and SMAP 

• Models overall underestimate energy-limited SMM, while 

overestimate water-limited SMM →SMM biases commonly exist 

in the major LSMs (individual comparison will be shown later)

• But the models can capture the overall anti-correlated 𝜏𝑆- 𝜏𝐿
relationnship 
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Results —— Intercomparison between models

- 𝜏𝑆 : Sensitive to soil layer depth but no significant 

sensitivity to coupled/offline schemes
- 𝜏𝐿 : insensitive to either soil layer depth or coupled/offline schemes 

2cm

5cm

2cm

• Both 𝜏𝑆 and 𝜏𝐿 biases are model dependent, but the magnitude of biases are similar across 5 annual cycles

• ERA5 performs the closest estimation of both 𝜏𝑆 and 𝜏𝐿 to those from SMAP

2cm

5cm

2cm
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Results —— 𝑭𝒑 and 𝑬𝑻𝑰𝑰 comparison of multi-model mean and SMAP 

• 𝑭𝒑 : Models overall underestimate water cycle rate

• 𝑬𝑻𝑰𝑰: Models overestimate it in arid regions, while 

underestimate it in humid regions

• Biases are similar across years

Only results from GLDAS-Noah, NCEP-FNL and ERA5 are aggregated 
here (same soil layer depth)  

2015 2016 2017 2018 2019

2015 2016 2017 2018 2019
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Results —— 𝜽𝒘 and 𝜽𝒄 comparison of multi-model mean and SMAP 

• Significant biases of 𝜃𝑤 and 𝜃𝑐 between models 

and SMAP

• Models underestimate 𝜃𝑤, overestimate 𝜃𝑐

• Biases are consistent over the years

• 𝜃𝑤 and 𝜃𝑐 are two critical parameters prescribed in 

LSMs → need to be corrected in LSMs!



Possible causes of bias– soil parameters

• The models present a substantial overestimation of wilting point—the multi-
model mean shows a global median of 0.13 versus 0.05 of SMAP. 

• The model wilting point has much greater heterogeneity, a wide range of values.14



Improving LSM by optimizing soil parameters
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• Optimizing soil texture using 
satellite observed 𝜽𝒘 and 𝜽𝒄

• Perturbing the baseline soil texture 
data set and then optimizing it 
using SCE_UA

• Baseline soil texture data sets
• GSDE
• HWSD

• Different PedoTransfer functions



Experiment Designs for Global Soil Texture Optimization
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†The lower and upper bound for Sand, Clay and SOC are 6% to 98%, 3% to 58%, 0 to 15% respectively. 

Optimization results exceed this range is regarded as ineffective and will be masked out. The analysis in the main 

context is conducted on 3000 iteration steps, i.e., for each experiment there are 3000 suits of soil sand, clay (and 

SOC) combinations. 

The opitimization result will then be chosen as the one combination that can produce the closest θw and θc to the 

satellite estimations.

Experime

nt Name 

Baseline Soil 

Data Name

PTF 

Scheme

Optimized Soil 

Data Name
Prescribed Ranges†

Opti_exp1 GSDE_default SR06 GSDEoc_sce ∆Sand: ±20%

∆Clay: ±10%

∆SOC: ±5%

Iteration: 3000 steps

Opti_exp2 GSDE_default CH78 GSDEnoc_sce

Opti_exp3 HWSD_default CH78 HWSDnoc_sce



Optimized Results: 𝜽𝒘 and 𝜽𝒄

• The wilting point and critical soil moisture content of GSDE can be partially 
improved by optimizing soil texture
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Optimized Results: SSM over China

18• Optimized soil texture can partly improve the NoaH performance



Results: Histogram of soil moisture in China

• The histograms of optimized cases are closer to the observation (both 
NNsm and ITPCAS)
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Obs

sce_ua

default

Obs

sce_ua

default



Results – Validation at In-situ stations

• RMSEs are improved over half 
of the stations at both monthly 
and JJA-mean time scale

• More stations are improved at 
JJA-mean scale

• Stations with RMSEs increased
• Influence of elevation (slope)
• Soil clay content
• Soil types
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Results – Validation at In-situ stations
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Monthly

JJA-mean

• The spatial variability across stations is improved with consistent RMSE accuracy (both 
Monthly and JJA-mean scales)

Default vs Obs Optimized vs Obs

G
S

D
E

 w
 S

O
M

G
S

D
E

 w
/o

 S
O

M
H

W
S

D
 w

 S
O

M



Conclusions

22

• Current major LSMs tend to show common SMM biases globally, with underestimation of the energy-
limited SMM and overestimation of water-limited SMM.

• Inter-model comparison shows ERA5 performs the best in characterizing SMM in terms of both energy-
limited and water-limited regimes

• The SMM biases may be highly related to the misrepresentation of soil moisture thresholds (𝜽𝒘 and 𝜽𝒄)

• Remote-sensing retrieved soil thresholds are proven to show unique benefits for calibrating the state-of-art 
soil texture maps, with clear improvement of SM simulations in terms of accuracy and spatial variability.

The way forward

• For model evaluation: 

• While we indeed evaluate major LSMs in this study, what about behaviors of SMM in fully 

coupled ESMs? → Evaluation using outputs from CMIP6 data

• For model improvement: 

• Which soil parameters play the most major role in determining SM simulation in LSMs? 

→Sensitivity analyses

• How to retrieve them from satellite products and incorporate them in LSM improvement? 



Thank you for your attention!


