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Why do we care? 

• Global response to tropical heating perturbations 

(PhD thesis research by Katarina Kosovelj)

• Vertically propagating equatorial waves to the stratosphere 

(research by Marten Blaauw)

• Coupling between the moisture and wind in tropical data assimilation 

(PhD thesis research by Ziga Zaplotnik)

Analysis uncertainties and forecast errors in a perfect model

• Spectra of an/fc uncertainties 

Possible implications for global predictablitiy

Summary



Tropical heating perturbations

Perturbations resembling different phases of MJO

Vertical profile of a deep heating with max in the middle troposphere 

K

For SST > SSTcrit , and zero otherwise

horizontal 
structure*rand(0,1)

T tendencies due to 
convection and LSC

Ensemble of 100 winters (1911-2010), with ERA-20C SST forcing 
Kosovelj et al., 
J. Atmos. Sci., May 2019 

D+/- M/-



Response to tropical heating perturbations: 
day 3, 200 hPa
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Scale and dynamics decomposition of the response

Diagnostics in terms of the Rossby wave and inertio-gravity waves – normal 

modes of the linearized primitive equations  quantification of the response 

Žagar et al., GMD, 2015http://modes.fmf.uni-lj.si
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Response to tropical heating perturbations: 
day 3, 200 hPa
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Spectral distribution of the response: day 3
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Response to tropical heating perturbations: 
day 14, 200 hPa, D+/-

Rossby waves

Kosovelj et al., 
J. Atmos. Sci., May 2019 



Spectral distribution of the response: day 14
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Response to tropical heating perturbations: 
day 14, 200 hPa, D+/-

Kelvin waveRossby waves

Kosovelj et al., 
J. Atmos. Sci., May 2019 



Vertical cross section of the Kelvin wave response along the EQ
Black line: the central latitude of the heating source

Kelvin wave response to tropical heating 
perturbations
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J. Atmos. Sci., May 2019 



Tropical origin of midlatitude
extratropical waves: scale properties

The overall response agrees with findings from previous linear, dry 
models. Perturbations mimicking phase 6 of MJO have a statistically 
significant impact over Europe in medium range

In short range, max response is in k=2-3 for dipole and in k=1 for 
monopole heating. In medium range, response to all perturbatioms
maximizes at k=1, but stronger for dipole  accuracy of diabatic heating 
initialization affects the forecast quality on different scales in different 
MjO phases.

The short-term response  is dominated bye the equatorial inertio-gravity 
waves (60% variance), especially the Kelvin wave (85% of IG variance)

Kosovelj et al., 
J. Atmos. Sci., May 2019 



Kelvin wave of the day

Nearly real Kelvin waves in ECMWF model: http://modes.fmf.uni-lj.si



Vertically-propagating Kelvin waves

10-day ECMWF 
forecast  

Kelvin waves

Active MJO 

Colors: zonal wind
Isolines: Temperature

Energy in k=1,2,3

Vertical cross-section of Kelvin waves along the equator. Maximum of 

wave activity under the tropical tropopause over the Indian ocean

Nearly real Kelvin waves in ECMWF model: http://modes.fmf.uni-lj.si



Multi-scale variability of Kelvin waves

Blauuw and Žagar, 2018, ACP

Zonal wavenumber k=1
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black lines: 90-day 
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L91 6-hourly analyses



Multi-scale variability of Kelvin waves

Blauuw and Žagar, 2018, ACP

Zonal wavenumber k=1

k>2
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Low-frequency Abs. amplitude intra-seasonal and Intra-monthly
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k=1 structure, Gill-type 
20o W of clim. winds

Strongest in DJF
Eastward tilt with height 

Max in 70-100 hPa
Modulated by seasonal 
movement of the TTL

L91 6-hourly analyses

KW zonal wind
~110 hPa



Uncertainties in tropical Kelvin wave analysis:               
ERA Interim vs. MERRA



A simplified model of tropical atmosphere

Adjustment to +1 K T perturbation 
in mid-troposphere over ITCZUnsaturated bkg

Saturated bkg: more intense IGW dynamics

MADDAM: Moist Atmosphere Dynamics Data 
Assimilation Model 

Zaplotnik et al., 2018, QJRMS



A single vertical mode model

Inertio-gravity waves and 4D-Var in the tropics

A single +2 K T obs at  

the end of 12-h window
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unsaturated
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outward backward in 

time, in AD and 

inward in TL model

Zaplotnik et al., 2018, QJRMS



Assimilation of moisture observations in 
the tropics

A single moisture observation in MADDAM 12-hour window 4D-Var

Single saturated humidity observation (RED dot), 2.4 g/kg, with error 1.1 g/kg

Is located at the end of the window                                             

00 06 12

Zaplotnik et al., 2018, QJRMS



Impact of a single moisture observations in 12-h 4D-Var
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00 06 12

Zaplotnik et al., 2018, QJRMS



Towards understanding analysis uncertainties

• Perfect-model Observing System Simulation Experiment (OSSE) 

• 80-member ensemble and EnKF

• No covariance inflation

• Homogeneous observing network (Δ~920 km)

• Long spin-up (from 1 Jan 2008) with the 
observed SST to reproduce nature run (‘truth’) 

• Observations simulated by the nature run 

• Assimilation cycle during three months 
(Aug-Oct) in 2008

• Data Assimilation Research Testbed (DART),
http://www.image.ucar.edu/DAReS/DART/

• Model: NCAR T85 Community Atmosphere Model, CAM 4 physics

Žagar et al., MWR, 2016



Analysis uncertainties (every 12 hr)



Flow dependency of short-term 
forecast uncertainties

longitude

 

 

30 90 150 210 270 330

11 Aug

21 Aug

31 Aug

10 Sep

20 Sep

30 Sep

10 Oct

20 Oct

30 Oct
0

1

2

3

4

5

6

7

8

9

10

11

longitude

 

 
c)

30 90 150 210 270 330

11 Aug

21 Aug

31 Aug

10 Sep

20 Sep

30 Sep

10 Oct

20 Oct

30 Oct
0

1

2

3

4

5

6

150 hPa, tropics 370 hPa, midlatitudes

• Ensemble spread in 
+12-hr fc zonal 
wind (m/s) along 
the latitude circle 

• 3-month long 
experiment with a 
perfect model 

• 12-hour EnKF data 
assimilation

longitude longitude

Ti
m

e

Žagar et al., MWR, 2016



Distribution of the short-term forecast uncertainties derived from the 

perfect-model ensemble looks similar to that in NWP systems. 

The largest variance is in synoptic scales in balanced modes and in the 

large-scale Kelvin wave

WIGEIGROSSBY

Žagar et al., 2016, MWR

Short-range global forecast uncertainties in the 
perfect-model framework 



Perfect model exp ECMWF EDA

Data assimilation is not efficient in reducing the tropical large scale 
spread, not even in the perfect model framework

Short-range global forecast uncertainties in the 
perfect-model framework: 1D spectra 

Žagar et al., 2013 QJRMS; 2016, MWR



Possible implications for global predictability

ECMWF ENS  progress 
comparison between May 
2015 and June 2018 

k=7, 2015, 2018
60% predictability limit 
reached at 7.8 and 7.9 days 

k=35, 2015, 2018
60% predictability limit 
reached at 2.6 and 3.3 days

k=64, 2015, 2018
60% predictability limit 
reached at 0.5 and 1.2 days

Errpr variances normalized by Emax

Recent improvements in predictability

Fitting method of Žagar et al., 2017, Tellus



On the global predictability limits 

same data (June 2018 ENS), 50% smaller analysis-error variances 

• Little predictability gain in synoptic waves (+0.3 days for k=7)

• But, k=100 would have the same predictability at day 2 as now k=40, 
and k=70 would have the same predictability at day 1 as now k=43

k=3

k=6

k=100



Dynamics: 

Perturbations in tropical heating across many spatio-temporal scales 
influence the global circulation and climate. For heating perturbations 
resembling MJO, the max response is found in different wavenumbers for 
different phases  => Implications for NWP 

Data assimilation:

Largest analysis uncertainties and largest growth of forecast uncertainties 
during the first day are in the tropics. They are flow dependent. The 
uncertainties are on average largest on the largest scales and this applies 
even to the perfect model.

Predictability:

Possible implications for midlatitude day-to-day weather predictability are 
related to the downscale propagation of large-scale initial condition error 
and the propagation of tropical uncertainty impact  to the extratropics

Summary



+12-hr forecast uncertainties (every 12-hr)



Tropical heating perturbations

Perturbations resembling different phases of MJO

Vertical profile of a deep heating with max in the middle troposphere 

K

Outgoing longwave radiation
March 2000 mean
NASA 

Kosovelj et al., 
J. Atmos. Sci., May 2019 
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NMF expansion: horizontal expansion functions 

HSFs are pre-computed for 
a given number of vertical 
modes, M

For every m=1,…,M, i.e. for 
every Dm

Meridional structure for 
Hough functions is 
computed for a range of the 
zonal wavenumbers K, 

k=-K,..,0,...,K

and a range of meridional
modes for the balanced, 
NROT, a range of EIG, NEIG, 
and a range of WIG, NWIG, 
modes. 

R=NROT + NEIG + NWIG



Scale decomposition of ensemble forecasts
Modal decomposition using the 3D orthogonal normal mode functions 
Statistics in modal space  (MODES software)

Computation of the ensemble variance (J. Atmos. Sci., 2015):
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Different time scales of the error growth

Growth in different waves 
(zonal wavenumber), 
Integrated vertically and 
meridionally

Growth in different waves 
in barotropic mode, 
integrated meridionally

Growth at small scales in 
midlatitudes for  
different vertical depths

Tellus A, 2017

• a rapid growth and an apparent saturation of of errors in smaller spatial 
scales early in the forecast range, 

• a slowly evolving component of error throughout the forecast range,
• uniformly distributed large-scale errors across the spectrum



The assimilation is most efficient in synoptic scales, 

for both balanced and IG motions

Efficiency = (po-pr)/pr

WIGEIGROSSBY

Žagar et al., 2016, MWR

Data assimilation efficiency



0.2 rad 0.4 rad 0.6 rad

Impact of the covariance localization radius 



Zonally-averaged 12-hour forecast 
uncertainties in zonal wind 

Spread of 12-hr forecast ensemble
3-month average
Spectral forecast model, T85

m/s

0.2 rad 0.4 rad 0.6 rad

Impact of the localization radius for data assimilation


