

The extratropical transition of Hurricane Ophelia (2017) as diagnosed with omega equation and vorticity equation

Mika Rantanen¹, Jouni Räisänen¹, Victoria Sinclair¹, Juha Lento² and Heikki Järvinen¹

¹Institute for Atmospheric and Earth System Research / Physics, University of Helsinki, Finland

²CSC – IT Center for Science, Espoo, Finland

OpenIFS Workshop 20.6.2019 University of Reading, UK

Ophelia was the farthest-east major hurricane observed in the satellite era

- Formed in the central North Atlantic on 9 October 2017
- Developed to category 3 hurricane (959 hPa and 51 m/s)
- Transformed to a mid-latitude cyclone and hit Ireland on 16 October 2017

Potential temperature (colors) + wind at 2 PVU level and 950-850 hPa relative vorticity (contours)

Ophelia was the farthest-east major hurricane observed in the satellite era

Aims of the study:

- 1. To determine the contributions of different atmospheric forcing terms for the evolution of Ophelia
- 2. To identify which of them led to the strengthening of the storm as post-tropical

OpenIFS (v40r1) simulation

- NHC and OpenIFS tracks aligned well
- Intensity was underestimated by both OpenIFS & ERA5

- Initial conditions from ECMWF operational analyses, at 12 UTC13 October 2017
- Resolution T639 L137 (31 km grid spacing)

OZO diagnostic software

1.

OpenIFS: hourly output of T, \overline{V} , ζ , p_s , Q and \overline{F} fields

OZO:
solving of
generalized
omega
equation &
vorticity
equation

Indired

Indirect effect of vertical motion

4.

$$\frac{\partial \zeta}{\partial t} = \left(\frac{\partial \zeta}{\partial t}\right)_V + \left(\frac{\partial \zeta}{\partial t}\right)_T + \left(\frac{\partial \zeta}{\partial t}\right)_F + \left(\frac{\partial \zeta}{\partial t}\right)_Q + \left(\frac{\partial \zeta}{\partial t}\right)_A$$

Adiabatic & diabatic terms

Adiabatic terms

Diabatic term

$$\frac{\partial \zeta}{\partial t} = \left(\frac{\partial \zeta}{\partial t}\right)_V + \left(\frac{\partial \zeta}{\partial t}\right)_T + \left(\frac{\partial \zeta}{\partial t}\right)_F + \left(\frac{\partial \zeta}{\partial t}\right)_Q + \left(\frac{\partial \zeta}{\partial t}\right)_A$$

Example: vorticity tendency by vorticity advection

$$\left(\frac{\partial \zeta}{\partial t}\right)_{V} = -\boldsymbol{V} \cdot \boldsymbol{\nabla}(\zeta + f) - \omega_{V} \frac{\partial \zeta}{\partial p} + (\zeta + f) \frac{\partial \omega_{V}}{\partial p} + \boldsymbol{k} \cdot \left(\frac{\partial \boldsymbol{V}}{\partial p} \times \boldsymbol{\nabla}\omega_{V}\right)$$

Direct effect + indirect effects

Vertical motion at 700 hPa induced by the forcing terms in the tropical phase of Ophelia

Low-level vorticity tendency induced by the forcing terms in the tropical phase of Ophelia

Ophelia developed to warm seclusion extratropical cyclone

Potential temperature at 850 hPa + MSLP with 4 hPa intervals

Visible satellite image at 12.43 UTC 16 October 2017

Vertical motion at 700 hPa induced by the forcing terms in the extratropical phase of Ophelia

Low-level vorticity tendency induced by the forcing terms in the extratropical phase of Ophelia

Time series of vorticity tendencies at the cyclone centre

- Diabatic processes (purple) were dominating
- Net effect of vorticity advection (blue) negative due to divergent circulation: divergent vorticity advection transports air with lower cyclonic vorticity to the area of high cyclonic vorticity

The contributions from different model parametrizations to diabatic heating

In OpenIFS, the total diabatic heating rate consists of five parts:

$$Q = \boxed{Q_r + Q_v + Q_g} + \boxed{Q_c + Q_{mp}}$$
 Negligible vorticity tendency for Ophelia

Temperature tendency caused by

radiation (Q_r), surface processes (Q_v), gravity wave drag (Q_q),

convection (Q_c) and cloud microphysics (Q_{mp})

Vertical motion induced by the convection and microphysics schemes

Main conclusions

- The post-ET intensification was mostly due to latent heat release in the warm front
- → generation of cyclonic vorticity
- Emphasizes the importance of resolving diabatic processes e.g. in climate models
- Baroclinic processes:
- → divergent VA was detrimental
- → WAA + in the tropical phase, but
 CAA in the extratropical phase

Rantanen et al: The extratropical transition of Hurricane Ophelia (2017) as diagnosed with a generalized omega equation and vorticity equation. *Submitted to Tellus A, 2019*

Vorticity tendency induced by the convection and microphysics schemes

Vorticity tendency by rotational and divergent vorticity advection

2017

Cyclone phase space diagram of Ophelia

