OpenIFS

A portable version of IFS for research and education and an outreach activity at ECMWF

marcus.koehler@ecmwf.int

ECMWF

- Founded in 1975, based in Reading UK.
- Independent intergovernmental organisation, funded by 34 states
- ECMWF is both a research institute and 24/7 operational forecast centre
- Archive and provide meteorological data / reanalyses

- HRES: highest resolution, 9km, global forecast to 10 days, twice daily
- **ENS**: 51 member ensemble, 18km, up to **15** days
- Extended range: based on ENS, twice weekly to 32 days ahead (36km)
- Long range: seasonal forecast 51 member ensemble
- Annual range: 4 times a year (extended long-range)
- More information: www.ecmwf.int

What is OpenIFS?

The **OpenIFS** programme provides a **supported**, **portable** version of the ECMWF IFS **operational model** to academic and research institutions, for **research and education**.

Objectives

- Increase scientific research using IFS.
- Increase collaborations with ECMWF on topics of interest.
- Improve research and training focusing on NWP and researchers trained on IFS.

• Also promotes: ECMWF scientific methods and tools for visualization etc

ECMWF IFS: Integrated Forecast System

- Development began in 1987, based on previous spectral model in use since 1983
- IFS has 3 main components.

ECMWF OpenIFS

The **OpenIFS model** has the **same forecast capability as IFS** but no data assimilation or observation handling capability.

OpenIFS key features:

2.5 million lines of code.

Runs on laptops, desktops, clusters and HPC.

Supports all IFS resolutions.

Supports ensemble forecasts.

OpenIFS updated every 3 yrs, IFS updated yearly.

ECMWF OpenIFS components

Idealized configurations

- · Shallow-water.
- Aqua-planet.
- · Held-Suarez.

IFS includes the NEMO ocean model.

OpenIFS provides the coupling code but not NEMO itself.

OpenIFS releases and licensing

Release policy

- New versions every ~3yrs to suit university research timescales.
- Aim to release versions when key scientific changes in IFS are made.
- Can only release operational versions after they have been replaced.

Licensing

- Not open source, restricted to research & teaching only.
- Perpetual site licence (not a personal licence).
- Licenses are limited to manage support capability.
- A single license covers the OpenIFS forecast model, single column model, standalone surface model (HTESSEL) and the standalone wave model.

Email: openifs-support@ecmwf.int for requests.

OpenIFS model version timeline

38r1

- First OpenIFS model released 2012.
- Did not include the coupled wave model.

40r1

- Operational model from Nov 2013 to May 2015
- Released 2016.
- Included coupled wave model.

43r3

- Released 2019.
- Aligns closely with IFS versions used for ERA5 & S5.
- Significant update in scientific and technical performance.

IFS: Spectral dynamical core

Spectral resolution

Global spherical harmonics. 'T' denotes the spectral resolution e.g. T1279

Gridpoint resolution

N denotes the gridpoint resolution e.g. N640 = 640 lats between pole & equator

Latitudes are 'Gaussian' but **choice** of longitudes.

IFS Grids: linear, quadratic & cubic

Relates how shortest waves are represented on the grid

Linear grid. $T_11279 \rightarrow N_1640$

- 2 pts sample shortest waves at the equator.
- Old operational grid, as used in OpenIFS 38r1 & 40r1.
- But, non-linear interactions can result in **aliasing** of waves

Quadratic grid. $T_Q1279 \rightarrow N_Q960$

- 3 pts sample shortest waves at the equator.
- No aliasing for quadratic terms (non-linear product of 2 variables)
- Not used operationally.

Cubic octahedral grid. $T_{Co}1279 \rightarrow N_{Co}1280$

- 4 pts sample shortest waves at the equator.
- Current operational grid, supported by OpenIFS 43r3.
- No aliasing for cubic terms (non-linear product of 3 variables)

New features of OpenIFS 43r3

Cubic octahedral grid

More gridpoints to describe retained spectral waves, more accurate forecasts.

New radiation scheme: ecRad

More efficient and accurate radiation scheme.

New lake model

Correct representation of inland water bodies reduces 2m temperature errors.

For all other changes, see:

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model

How can ECMWF help researchers?

An outline

• ECMWF learning for research

ECMWF research datasets

Training

Annual training courses that cover:

- Advanced Numerical Weather Prediction:
 numerical methods, parametrization of physical processes, data assimilation.
- Use of our products, software and systems.

Courses are open to all:

- Free to participants from ECMWF member states.
- Face to face training given by ECMWF scientists and staff.
 Opportunities to meet and discuss research with ECMWF staff.
- Course notes are available online.

For more information:

https://www.ecmwf.int/en/learning/training
Sarah.Keeley@ecmwf.int (DTP contact point)

Learning

Annual Seminar (NWP focus)

 Part of ECMWF's educational programme aimed at young scientists and established scientists that want to engage more with NWP.

Workshops

- Focus on specialist subjects related to weather prediction, climate monitoring and high performance computing.
- Summarise state-of-the-art and set future priorities.

2019 Annual Seminar: Seasonal forecasting

https://www.ecmwf.int/en/learning/workshops/

e-Learning

ECMWF online modules

- Presents foundation material from ECMWF NWP training courses.
- Self-paced, learn anywhere-anytime.
- Developed with ECMWF research scientists, not a collection of powerpoint slides or recorded talks!

Parametrization of diabatic processes

1 hour

Parametrization of diabatic processes: case studies

30 minutes

The mass flux approach and the Integrated Forecasting System (IFS) scheme

Ensemble Forecasting: sources of forecast uncertainty

1 hour

ECMWF Datasets for research

Atmospheric, Land and Ocean reanalyses

- Uses fixed versions of ECMWF's Integrated Forecast System (IFS).
- ERA products: land and atmosphere.
- ORA products: ocean and sea-ice.

https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets

Copernicus: Atmosphere Monitoring Service (CAMS)

- Based on IFS combined with atmospheric composition models.
- Global atmospheric composition and European air quality datasets.

https://atmosphere.copernicus.eu/

All available to download for free

ECMWF Special Projects

Researchers can apply for time and storage on ECMWF HPCF

- For "Scientific investigations likely to be of interest to general scientific community".
- Collaborative projects favoured.
- Need to apply via the National Met Service (e.g. UK Met Office).
- Deadline is 30th June.
- Maximum duration is 3 yrs.

Search 'ECMWF special projects' for more details.

Final remarks

• OpenIFS is a long term, supported core activity to provide IFS to member and co-operating states

Research / training

- Links to University teaching programmes essential
- Develop pool of talented young scientists with expertise in European modelling

Partnerships and collaboration

- Opens new possibilities for collaboration with member state met sevices, Universities and research institutes
- ECMWF would like to see community develop around OpenIFS
 - With significant involvement of member and co-operating states

