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Overview of talk

* Brief history of the ECMWF radiation scheme

ecRad: a new radiation scheme and impact on forecast skill

Recent changes to aerosols and the stratosphere

Using offline and online ecRad to understand 3D cloud radiative effects

Plans for detailed representation of vegetation and urban areas

Plans for a faster gas optics scheme
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Modular radiation scheme
for ECMWF: ecRad

« Gas optics
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How do the three solvers compute how clouds interact with radiation?
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Monte-Carlo Independent Column Approximation (McICA, Pincus et al. 2005)
Each wavelength sees a different cloud realization (OPERATIONAL)
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Tripleclouds (Shonk & Hogan 2008)

Approximate cloud variability by three regions: one clear and two cloudy
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SPARTACUS (Hogan et al., Schafer et al. 2016)

Tripleclouds with lateral radiation exchange between regions
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Improved efficiency

(a) Radiation scheme configurations Relative
McRad, McICA, LWscat=0 NI | | | | | {to McRad
ecRad, McICA, LWscat=0 F ] 1-40.9%
ecRad, McICA, LWscat=1 1-38.4%
ecRad, McICA, LWscat=2 = 1-19.7%
ecRad, Tripleclouds, LWscat=1 F | 440.8%
ecRad, SPARTACUS, LWscat=1 . | | . | . | . 11+255%
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Time per profile (ms)

(b) Radiation scheme components

Preparation E I McRad | 1+5-3%
Gas optics C—ecRad | | 37 09

Aerosol optics # 1-37.8%

Cloud optics 1-94.9%

Cloud generator 1-83.3%

SW radiative transfer Solver +-41.2%

LW radiative transfer I_ 4-13.5%
0 0.5 1 1.5 2 2.5 3 3.5 4

Time per profile (ms)
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introduced in 46r1 with
minimal cost
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ecRad is much faster than
original McRad scheme in
operational McICA
configuration

Longwave scattering
introduced in 46r1 with
minimal cost

Tripleclouds a bit more
expensive

3D radiation much more
expensive but feasible in
research mode

Cloud treatment is much
faster
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Pressure (hPa)

Reduced noise in ecRad’s McICA solver
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Fast longwave scattering for clouds but not aerosols
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For each layer, compute
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Fast longwave scattering for clouds but not aerosols
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R R
Re-use T and S™ in clear layers
é . .

< ECMWF 12

Clear sky

Cloudy sky




Fast longwave scattering for clouds but not aerosols
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Fast longwave scattering for clouds but not aerosols

No scattering (45R1)

For each layer, compute
transmittance T and sources
S™ (reflectance R = 0)
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Fast longwave scattering for clouds but not aerosols

No scattering (45R1) Cloud & aerosol scattering Cloud scattering only (46R1)
For gach layer, compute More expensive calculation Cheap no-scattering
transmittance T and sources of TR and ™ calculation

S™ (reflectance R = 0)

Compute total
albedo and
total upward
! 1
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Compute
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>
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Impact on forecast skill

 Latest version of ecRad reduces
temperature RMSE by ~0.5%
compared to older McRad scheme

— Combination of longwave scattering,
reduced biases and reduced McICA
noise

» Until 46R1, all model configurations
except HRES call radiation every 3 h

* Reinvest 40% speed-up by calling
radiation every 2 h?

— Temperature RMSE reduced by 1-2%,
associated with better low clouds
especially over tropical rainforests

 Ensemble system uses 1-h radiation
from operational cycle 46R1

— Temperature RMSE down by 3%

Hogan & Bozzo (JAMES 2018)
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The fight against compensating errors...

43R3 introduced ecRad along 43R1 Control

with a fix for liquid cloud optics Old SW bug fixed
New scheme

Fix liquid optics

Fix ice optics |-

46R1 introduced LW scattering
and fixed an ice-optics bug that
had a similar but opposite impact

LW scattering- - -

Exp—Ran overlap
Better cloud structure

3D effects : ; : : ; ; ; : ;
—4 -3 2 1 0 1 2 - 0 1 2 3 4
Better overlap and cloud Change in SW net flux (W m™) Change in LW net flux (W m™?)
structure improves cloud cover,
but reduces shortwave at the 43R1 Control |
surface, which is already too cold Old SW bug fixed =% -

New scheme :
Fix liquid optics [~~~ -
Fix ice opticst - -q

Perhaps 3D radiation would help
to improve fluxes and
temperature?

LW scatteringf- - - ®
Exp-Ran overlap

Better cloud structure : : : : ! :
3Deffectst ] I NHIand....:\o.__:___

[Ny 063 064 065 066 067 068 069 -0.4 -0.2 0 0.2 0.4
- ECMWF Total cloud cover Change to 2-m temperature (K)




The fight against compensating errors...

43R3 introduced ecRad along
with a fix for liquid cloud optics

46R1 introduced LW scattering
and fixed an ice-optics bug that
had a similar but opposite impact
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temperature?
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with a fix for liquid cloud optics

46R1 introduced LW scattering
and fixed an ice-optics bug that

43R1 Control
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Fix liquid optics
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The fight against compensating errors...

CERES (-0.25) CERES (+3.82)

43R3 introduced ecRad along 43R1 Control

with a fix for liquid cloud optics Old SW bug fixed
New scheme

Fix liquid optics

Fix ice optics |-

46R1 introduced LW scattering
and fixed an ice-optics bug that
had a similar but opposite impact

LW scattering- - -

Exp—Ran overlap
Better cloud structure

3D effects : _ : : ; : ; )
4 3 2 4 0 i =2 4 o 1 2 3 4
Better overlap and cloud Change in SW net flux (W m™) Change in LW net flux (W mi?)
structure improves cloud cover, Calipso (+0.034)
but reduces shortwave at the 43R1 Control R REIRTETRTPRN POTRRR A
surface, which is already too cold ~ Old SWbug fixed[ > %~ @ | ' |
New scheme

Fix liquid optics |- | . . .
Fix ice optics |- - ...... ________ _______ ________ ________

Perhaps 3D radiation would help
to improve fluxes and
temperature?

LW scatteringf- - - ®

Exp-Ran overlap

Better cloud structure -« —&— Global | .j._ .......... e
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The fight against compensating errors...

43R3 introduced ecRad along
with a fix for liquid cloud optics

46R1 introduced LW scattering

and fixed an ice-optics bug that

43R1 Control
Old SW bug fixed
New scheme

Fix liquid optics

Fix ice optics |-
LW scattering- - -

Exp—Ran overlap

had a similar but opposite Impact geyer cioud structure

Better overlap and cloud
structure improves cloud cover,
but reduces shortwave at the

surface, which is already too cold

Perhaps 3D radiation would help

to improve fluxes and
temperature?

< ECMWF

3D effects

4

43R1 Control

Old SW bug fixedf "7+

New scheme

Fix liquid optics- -~ -~
Fix ice optics| -
LW scatteringf- -~ @

Exp-Ran overlap
Better cloud structure

0.63 064 065 066 0.67 0.68 0.69 -0.4

CERES (-0.25)

CERES (+3.82)
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IFS model climate: the good...
<2 22 24 W m?

Wild et al. (2015) Global | Global | Land | Land
Surface downwelling | SW LW SW LW
43 climate models 4+5 =-2+4 610 -4+7

ERAS 3.5 -2.3 5.3 =-2.4
Coupled IFS climate -0.4 -0.9 0.4 0.7

< ECMWF
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IFS model climate: the good...
<2 22 24 W m?

Surfacedownwelllng SW LW SW

455 284 6110 -4%7
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04 09 04 07

..the bad... (SW cloud radiative effect bias)

135°W 90°W 45°W 0°E 45°E 90°E 135°E

15



IFS model climate: the good... B
<2 22 24 W ...and the ugly

Wild et al. (2015) Global | Global | Land Land : )

temperature bias)

455 284 6£10 -4:7
35 23 53 -24
04 08 04 07

..the bad... (SW cloud radiative effect bias)

135°W 90°W 45°W 0°E 45°E 90°E 135°E

Pressure (hPa)

Latitude (°)

-20 -15 -10 -5 0 5 10 15
Temperature difference (K)

— | —



Pressure (hPa)

Upper stratosphere warm bias

Historically, IFS has had a huge warm bias in upper stratosphere and above

Improved in recent cycles (better longwave in ecRad, CAMS ozone, better solar zenith averaging)

Remaining bias could be removed in stratosphere by updating solar UV which is 7-8% too high in IFS

Lower mesosphere could be improved with a diurnal cycle of ozone (even if approximate)

But resolution-dependence of lower stratosphere temperature (due to waves) needs to be addressed

Temperature °C)

-80 -60 -40 -20 0

Pressure (hPa)

(b)

-5 0 5 10 15 20 25
Temperature bias compared to MLS (°C)

McRad scheme with MACC ozone
+ CAMS ozone
— — — + averaged solar zenith angle
+ better longwave (ECRAD scheme)
+ diurnally varying ozone
+ modified solar spectrum
+ no sponge
— LS 2004-2008
= = = ERA-Interim 2000-2006

IFS Cycle 41R1
Hogan & Hirahara (2016)
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Aerosols

« Atmospheric forcing depends on absorption optical depth:
| Tegen JIA (pre 43R3) . CAMSJA (43R3)

I— E— e
0.0|05 0.01 0.02 0.04 0.06 0.08 Ol.‘l 0.12 0.15 0.2

* Reduced absorption over Arabia in new CAMS climatology
weakens the overactive Indian Summer Monsoon, halving
the overestimate in monsoon rainfall

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Bozzo et al. (2017)

(a) Tegen climatology: geopotential bias

Unit: m2/s2 Mean: -30.8 RMS: 42 Sig: 56%

-210 -50 -30 -10 1|D 3|D 50 70
| |

(c) Tegen climatology: zonal wind bias

Unit: 0.1m/s Mean: 2.68 RMS: 8.73 Sig: 49%
-22 -10 -6 -2 2 6 10 26




Bozzo etal. (2017) (b) CAMS climatology: geopotential bias

AerOSOIS Unit: m2/s2 Mean: -16.1 RMS: 28.6 Sig: 41%
-170 -50 -30 -10 1|G 3|0 50 70
« Atmospheric forcing depends on absorption optical depth: : —

I— E— e
0.0|05 0.01 0.02 0.04 0.06 0.08 0|.1 0.12 0.15 0.2

* Reduced absorption over Arabia in new CAMS climatology (d) CAMS climatology: zonal wind bias
weakens the overactive Indian Summer Monsoon, halving Unit: 0.1m/s Mean: 1.37 RMS: 7.46 Sig: 41%
the overestimate in monsoon rainfall e —

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS




Bozzo et al. (2017) (b) CAMS climatology: geopotential bias
Aerosols (2017) 8Y: 80P

Unit: m2/s2 Mean: -16.1 RMS: 28.6 Sig: 41%
-170 -50 -30 -10 10 30 50 70

« Atmospheric forcing depends on absorption optical depth:

I— E— e
0.0|05 0.01 0.02 0.04 0.06 0.08 0|.1 0.12 0.15 0.2

* Reduced absorption over Arabia in new CAMS climatology (d) CAMS climatology: zonal wind bias
weakens the overactive Indian Summer Monsoon, halving Unit: 0.1m/s Mean: 1.37 RMS: 7.46 Sig: 41%
the overestimate in monsoon rainfall e —

* Increased absorption over Africa degraded 850-hPa
temperature, traced to excessive biomass burning in CAMS

* We can measure the impact of aerosols on the tropical
atmosphere more easily than the absorption optical depth
itself! Use to provide information on aerosol errors?

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS




Main mechanisms for 3D radiative effects
® Shortwave side illumination
— Strongest when sun near horizon ® Shortwave entrapment (new!)

epting cloud — Horizontal transport beneath clouds
makes reflection to space less likely
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Main mechanisms for 3D radiative effects
® Shortwave side illumination
— Strongest when sun near horizon ® Shortwave entrapment (new!)

epting cloud — Horizontal transport beneath clouds
makes reflection to space less likely

-

® Longwave side emission

— Radiation can now be emitted from the

side of a cloud

— 3D effects can increase surface cloud
radiative effect




Representing three extremes of “entrapment” in SPARTACUS

* We need albedo matrix A at layer interfaces

(a) Zero entrapment (b) Explicit entrapment (c) Maximum entrapment Layer:

No 3D effects requires
matrix to be diagonal

A=(agy ap)=(5 o

< ECMWF 1o
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* We need albedo matrix A at layer interfaces

(a) Zero entrapment (b) Explicit entrapment (c) Maximum entrapment Layer:
1
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e Region a 2
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Representing three extremes of “entrapment” in SPARTACUS

* We need albedo matrix A at layer interfaces

(a) Zero entrapment (b) Explicit entrapment (c) Maximum entrapment

1
297
ﬁg ?ﬂ H Region a 5
3
4
5
No 3D effects requires 43r3 SPARTACUS: full
matrix to be diagonal horizontal homogenization
A (aaa aba) _ (a 0) of radiation under clouds
Agp  App 0 «a A = (a/2 a/Z)
a2 a2

< ECMWF 1o

Layer:



Representing three extremes of “entrapment” in SPARTACUS

* We need albedo matrix A at layer interfaces

(a) Zero entrapment (b) Explicit entrapment (c) Maximum entrapment

Layer:
1
297
ﬁg ?ﬂ H Region a 5
3
4
5
No 3D effects requires Better approach in 43r3 SPARTACUS: full
matrix to be diagonal 46rl: compute RMS horizontal homogenization
A (aaa aba) _ (a 0) dhcirlzontai Irplﬁtratlcig of radiation under clouds
Ay App 0 « istance of light paths A a/2 a2
beneath cloud a2 af2

< ECMWF 1o
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Evaluating offline ecRad using Monte Carlo calculations on 100x100km scenes
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Evaluating offline ecRad using Monte Carlo calculations on 100x100km scenes

Monte Carlo
calculations by
Howard Barker

« SPARTACUS with explicit entrapment matches Monte Carlo well, on average
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Evaluating offline ecRad using Monte Carlo calculations on 100x100km scenes

« SPARTACUS with explicit entrapment matches Monte Carlo well, on average

* Huge difference between maximum entrapment and zero entrapment

Cumulus

(e)

SPARTACUS Zero
SPART. Edge-only
SPART. Explicit (¢=0)
SPART. Explicit (¢=1)
SPART. Maximum
Monte Carlo
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Evaluating fluxes using all 65 scenes
3D radiative effect predicted by SPARTACUS agrees quite well with Monte Carlo

Solar zenith anale: 20° Solar zenith angle: 50° Solar zenith angle: 80°
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o MC mean: -0.4 W m?
Bias: +0.6 W m™ Bias: +0.4 W m™ Bias: +0.2 W m™
10 ~ RBRMSE:6.9Wm™ 10 , ~ RMSE:4.4Wm™ 10 | RMSE: 1.3 Wm™
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Monte Carlo 3D-ICA (W m™®) Monte Carlo 3D-ICA (W m?) Monte Carlo 3D-ICA (W m?)

MC mean: +6.7 W m™ c‘I".r‘llf: mean: +4.3 W m™.
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o ©
Q
SPARTACUS 3D-1D (W m®)

* The entrapment mechanism appears to win over side-illumination, implying
shortwave 3D effects warm the climate system

 Very dependent on cloud size, which might not be realistic for these CRM
scenes but needs to be parameterized in any global simulation

< ECMWF 2
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Evaluating fluxes using all 65 scenes

3D radiative effect predicted by SPARTACUS agrees quite well with Monte Carlo

(d)

Solar zenith anagle: 20°
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Side -illumination wins

* The entrapment mechanism appears to win over side-illumination, implying
shortwave 3D effects warm the climate system

 Very dependent on cloud size, which might not be realistic for these CRM

scenes but needs to be parameterized in any global simulation

< ECMWF




Offline 3D radiative effect...

%urface SW 3D effect (mean -0.34 W m™?)
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Offline 3D radiative effect... ...online impact in a climate simulation

Surface SW 3D effect (mean -0.34 W m?)

« 25-year free-running coupled simulation of the IFS

o - Positive feedback in the Arctic associated with clouds and sea ice
0 % (a) 2-m temperature (K) global=0.833 land=1.1 (a) Arctic
18 T T T T T T T T
45
16 |
S — ~
0 45 90 135 180 225 270 315 360 = jal
2 _
-2 E o
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e Tt —10t
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45 Longitude (9) ‘s 6F
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w
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of = 5 0.02 Better agreement with
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Towards “SPARTACUS-Surface”

« SPARTACUS technique to represent 3D
interaction of radiation with clouds can be
applied to trees (Hogan et al., GMD 2018)
and buildings (Hogan, BLM 2019)

 Currently testing offline, but could be used to
improve representation of forests and cities
in IFS / OpenlFS in future

0 | | | | |

[ IClear air: region a S
10 1 | I Building: region b | Layer1

£ I \Vegetation: region v| V2 |

... Interface 1.5

Layer 2 -
_Interface 2.5

0 0.2 0.4 0.6 0.8 1
Russell Square area of London Area fraction -




Height (m)

Example profiles of flux and net absorption

« Meg Stretton’s PhD project: compare profiles to explicit
calculations using DART model

* Which details of an urban scene really matter which can be
safely ignored? What level of detail can be justified in a
weather or climate model?

2-m vertical resolution Solar zenith angle 30°

80 80 [ [ 80
20| I Buildings | | 20| Downwelling direct | | Wall
[ Vegetation Downwelling total 70 Vegetation
Upwelling Roof
601 1 601 60 Ground
=50+ —= 50
g £
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T30 L 30} —e |
20 201
10 | 10 ]
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i i 0 i . i i 0 L -
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Example profiles of flux and net absorption

« Meg Stretton’s PhD project: compare profiles to explicit
calculations using DART model

* Which details of an urban scene really matter which can be
safely ignored? What level of detail can be justified in a
weather or climate model?

2-m vertical resolution Solar zenith angle 70°

80 80 T
- I Buildings | | - Downwelling direct Wall
[ Vegetation Downwelling total Vegetation
Upwelling Roof

60 | Ground
E
c
§o)
)
I

0 0.2 0.4 0.6 0.8 1 0 200 400 600 800 1000 0 10 20 30 40
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Efficiency: temporal versus spatial resolution

* Radiation is now 5% of high-resolution (HRES) model time, compared to 19% a decade ago

» Cost of radiation is a trade-off between temporal/spatial/spectral resolution and physical sophistication, and
compared to other global NWP centres, ECMWF has lowest temporal/spatial resolution and highest spectral
resolution (Met Office uses 3.7 times fewer spectral intervals!)

Centre Radiation timestep (h) Horiz. coarsening Spectral intervals
HRES ENS HRES ENS SW LW
ECMWF 1 3 10.24 6.25 112 140
NCEP 1 1 1 1 112 140
DWD 0.4 0.6 4 4 112 140
Meéteéo France 1 1 1 1 - 140
Met Office 1 1 1 1 21 47
CMC 1 1 1 1 40 57
JMA 1 1 (SW), 3 (LW) 4 4 22 156
FSCK - - - - ~ 15 ~ 32

o
A~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 25



Efficiency: temporal versus spatial resolution

* Radiation is now 5% of high-resolution (HRES) model time, compared to 19% a decade ago

» Cost of radiation is a trade-off between temporal/spatial/spectral resolution and physical sophistication, and
compared to other global NWP centres, ECMWF has lowest temporal/spatial resolution and highest spectral
resolution (Met Office uses 3.7 times fewer spectral intervals!)

« Spatial coarsening is severe, but thanks to approximate radiation updates, 6.25x more spatial resolution
(and cost) gives only marginal improvement in 2-m temperature, whereas reducing radiation timestep
from 3h to 1h improves forecasts by 2-4%

Centre Radiation timestep (h) Horiz. coarsening Spectral intervals
HRES ENS HRES ENS SW LW
ECMWF 1 3 10.24 6.25 112 140
NCEP 1 1 1 1 112 140
DWD 0.4 0.6 4 4 112 140
Meéteéo France 1 1 1 1 - 140
Met Office 1 1 1 1 21 47
CMC 1 1 1 1 40 57
JMA 1 1 (SW), 3 (LW) 4 4 22 156
FSCK - - - - ~ 15 ~ 32

Normalised difference
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Efficiency: temporal versus spatial resolution

* Radiation is now 5% of high-resolution (HRES) model time, compared to 19% a decade ago

» Cost of radiation is a trade-off between temporal/spatial/spectral resolution and physical sophistication, and
compared to other global NWP centres, ECMWF has lowest temporal/spatial resolution and highest spectral
resolution (Met Office uses 3.7 times fewer spectral intervals!)

« Spatial coarsening is severe, but thanks to approximate radiation updates, 6.25x more spatial resolution
(and cost) gives only marginal improvement in 2-m temperature, whereas reducing radiation timestep
from 3h to 1h improves forecasts by 2-4%

* How can we afford even more frequent radiation and more physical sophistication (e.g. 3D effects)?

Centre Radiation timestep (h) Horiz. coarsening Spectral intervals
HRES ENS HRES ENS SW LW
ECMWF 1 3 10.24 6.25 112 140
NCEP 1 1 1 1 112 140
DWD 0.4 0.6 4 4 112 140
Meéteéo France 1 1 1 1 - 140
Met Office 1 1 1 1 21 47
CMC 1 1 1 1 40 57
JMA 1 1 (SW), 3 (LW) 4 4 22 156
FSCK - - - - ~ 15 ~ 32

Normalised difference

Z
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Z2T: NH 20° to 90°
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How can we optimize the spectral integration?

» Three options under consideration:

Molecular absorption cross—section (cm2)

— RRTMGP: optimized RRTM-G from U. Colorado

— Neural network: collaboration with NVIDIA

— Full-spectrum correlated-k scheme (Pawlak et al. 2014, Hogan 2010)

30

Wavelength (um)
15 10 9 8 7 6 5 4

ater vapour spectrum

500

1000 1500 2000 2500
Wavenumber (cm'1)

RRTM-G uses 16 LW bands...

o
A\~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS
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How can we optimize the spectral integration?

» Three options under consideration:
— RRTMGP: optimized RRTM-G from U. Colorado
— Neural network: collaboration with NVIDIA

— Full-spectrum correlated-k scheme (Pawlak et al. 2014, Hogan 2010)
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RRTM-G uses 16 LW bands... reorder and discretize to 140 spectral intervals

o
A\~ 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



How can we optimize the spectral integration?

» Three options under consideration:
— RRTMGP: optimized RRTM-G from U. Colorado
— Neural network: collaboration with NVIDIA

— Full-spectrum correlated-k scheme (Pawlak et al. 2014, Hogan 2010)

3

10 I I 1 | | I
18 Water vapour spectrum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Normalized rank g

Molecular absorption cross—section (cm
[~
.

RRTM-G uses 16 LW bands... reorder and discretize to 140 spectral intervals
FSCK reorders the entire spectrum: only 30-35 intervals required for same accuracy?

o
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Summary and outlook

* Modular design of ecRad makes it well suited for research and operational use
— We can test alternative modules (e.g. new solvers) while keeping everything else fixed
— ecRad has been implemented in IFS, MesoNH and ICON models
« Offline version (available under an identical license to OpenlFS) helps research work
— Offline ecRad has >20 users worldwide
— Easier to implement and test new features offline
« Outlook for the “Grand Challenges” in the coming years
— Overhaul surface treatment, including 3D interactions with cities and forests
— Package of physically-based improvements to clouds
— Role of aerosols in predictability; upgrade water vapour continuum
— Remove middle-atmosphere temperature bias via new UV solar spectrum and ozone

— Much more efficient gas optics and spectral integration

< ECMWF
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« Radiation in NWP (ECMWEF Technical memo, 2017)
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A Flexible and Efficient Radiation Scheme
for the ECMWF Model

Robin J. Hogan'"' and Alessio Bozzo'

European Centre for Medium-Range Weather Forecasts, Reading, UK

Abstract This paper describes a new radiation scheme ecRad for use both in the model of the
European Centre for Medium-Range Weather Forecasts (ECMWF), and off-line for noncommercial research.
Its modular structure allows the spectral resolution, the description of cloud and aerosol optical properties,
and the solver, to be changed independently. The available solvers include the Monte Carlo Independent
Column Approximation (MclCA), Tripleclouds, and the Speedy Algorithm for Radiative Transfer through
Cloud Sides (SPARTACUS), the latter which makes ECMWF the first global model capable of representing
the 3-D radiative effects of clouds. The new implementation of the operational MclCA solver produces less
noise in atmospheric heating rates, and is 41% faster, which can yield indirect forecast skill improvements
via calling the radiation scheme more frequently. We demonstrate how longwave scattering may be
implemented for clouds but not aeroscls, which is only 4% more computationally costly overall than
neglecting longwave scattering and yields further modest forecast improvements. It is also shown how

a sequence of radiation changes in the last few years has led to a substantial reduction in stratospheric
temperature biases.

Plain Language Summary Solar and thermal infrared radiation provide the energy that drives
weather systems and ultimately controls the Earth’s climate. Accurately simulating these energy flows is
therefore a crucial part of the computer models used for weather and climate prediction. This paper
describes a flexible and efficient new software package, ecRad, for computing radiation exchange. It became
operational in the forecast model of the European Centre for Medium-Range Weather Forecasts (ECMWF)
in July 2017, and is 41% computationally faster than the previous package. This offers the possibility to
update the radiation fields in the model simulations more frequently for the same overall computational
cost, which we show in turn can improve the skill of weather forecasts. A unigue feature for

a radiation package of this kind is the ability to simulate radiation flows through the sides of clouds,

not just through the base and top, making it well suited as a tool for research into atmospheric
radiation exchange.

1. Introduction



