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Overview of talk

• Brief history of the ECMWF radiation scheme

• ecRad: a new radiation scheme and impact on forecast skill

• Recent changes to aerosols and the stratosphere

• Using offline and online ecRad to understand 3D cloud radiative effects

• Plans for detailed representation of vegetation and urban areas

• Plans for a faster gas optics scheme
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• Solver
– McICA, Tripleclouds or 

SPARTACUS solvers

– SPARTACUS makes the IFS 

the only global model that can 

do 3D radiative effects

– Better solution to longwave 

equations improves 

tropopause & stratopause

– Longwave scattering optional

– Can configure cloud overlap,  

width and shape of PDF

• Surface (under development)
– Rigorous and consistent 

treatment of radiative transfer 

in urban and forest canopies

• Offline version available for 

non-commercial use under 

OpenIFS license
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How do the three solvers compute how clouds interact with radiation?
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Monte-Carlo Independent Column Approximation (McICA, Pincus et al. 2005)

⚫ Use prognostic cloud fraction and assumed standard deviation of cloud water

⚫ Stochastic cloud generator is fast but leads to some noise in fluxes

⚫ McICA now used in many (most?) global weather and climate models

Each wavelength sees a different cloud realization (OPERATIONAL)
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Tripleclouds (Shonk & Hogan 2008)

⚫ Cloud overlap rules govern how radiation enters different regions at layer 
interfaces

⚫ Fluxes and heating rates are noise-free, but this solver is slower than 
McICA

Approximate cloud variability by three regions: one clear and two cloudy
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SPARTACUS (Hogan et al., Schäfer et al. 2016)

⚫ SPARTACUS makes ecRad the first GCM radiation scheme that can 
simulate 3D radiative effects

⚫ Slower than Tripleclouds, and still under development and evaluation

Tripleclouds with lateral radiation exchange between regions
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• ecRad is much faster than 

original McRad scheme in 

operational McICA 

configuration

• Longwave scattering 

introduced in 46r1 with 

minimal cost

• Tripleclouds a bit more 

expensive

• 3D radiation much more 

expensive but feasible in 

research mode

• Cloud treatment is much 

faster



Reduced noise in ecRad’s McICA solver
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Impact on forecast skill

• Latest version of ecRad reduces 

temperature RMSE by ~0.5% 

compared to older McRad scheme

– Combination of longwave scattering, 

reduced biases and reduced McICA

noise

• Until 46R1, all model configurations 

except HRES call radiation every 3 h

• Reinvest 40% speed-up by calling 

radiation every 2 h?

– Temperature RMSE reduced by 1-2%, 

associated with better low clouds 

especially over tropical rainforests

• Ensemble system uses 1-h radiation 

from operational cycle 46R1

– Temperature RMSE down by 3% 

13Hogan & Bozzo (JAMES 2018)
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Wild et al. (2015)

Surface downwelling

Global 

SW

Global 

LW

Land 

SW

Land 

LW

Observations 184.7 341.5 184 306

43 climate models 4 ± 5 −2 ± 4 6 ± 10 −4 ± 7

ERA5 3.5 −2.3 5.3 −2.4

Coupled IFS climate −0.4 −0.9 0.4 0.7

…the bad… (SW cloud radiative effect bias)

…and the ugly
(middle-atmosphere 

temperature bias)

<2  ≥2 ≥4 W m-2



Upper stratosphere warm bias

• Historically, IFS has had a huge warm bias in upper stratosphere and above

• Improved in recent cycles (better longwave in ecRad, CAMS ozone, better solar zenith averaging)

• Remaining bias could be removed in stratosphere by updating solar UV which is 7-8% too high in IFS

• Lower mesosphere could be improved with a diurnal cycle of ozone (even if approximate)

• But resolution-dependence of lower stratosphere temperature (due to waves) needs to be addressed

16EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

IFS Cycle 41R1

IFS Cycle 43R3
Hogan & Hirahara (2016)



Aerosols

• Atmospheric forcing depends on absorption optical depth:

• Reduced absorption over Arabia in new CAMS climatology 

weakens the overactive Indian Summer Monsoon, halving 

the overestimate in monsoon rainfall
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Aerosols

• Atmospheric forcing depends on absorption optical depth:

• Reduced absorption over Arabia in new CAMS climatology 

weakens the overactive Indian Summer Monsoon, halving 

the overestimate in monsoon rainfall

• Increased absorption over Africa degraded 850-hPa 

temperature, traced to excessive biomass burning in CAMS

• We can measure the impact of aerosols on the tropical 

atmosphere more easily than the absorption optical depth 

itself! Use to provide information on aerosol errors?
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Representing three extremes of “entrapment” in SPARTACUS

• We need albedo matrix A at layer interfaces
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𝐀 =
𝛼𝑎𝑎 𝛼𝑏𝑎
𝛼𝑎𝑏 𝛼𝑏𝑏

=
𝛼 0
0 𝛼 𝐀 =

𝛼/2 𝛼/2
𝛼/2 𝛼/2

No 3D effects requires 

matrix to be diagonal

43r3 SPARTACUS: full 

horizontal homogenization 

of radiation under clouds

Better approach in 

46r1: compute RMS 

horizontal migration 

distance of light paths 

beneath cloud

𝛼𝑏𝑎
Region b Region a
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Evaluating offline ecRad using Monte Carlo calculations on 100x100km scenes
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October 29, 2014

Evaluating offline ecRad using Monte Carlo calculations on 100x100km scenes

• SPARTACUS with explicit entrapment matches Monte Carlo well, on average

• Huge difference between maximum entrapment and zero entrapment
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Evaluating fluxes using all 65 scenes

• 3D radiative effect predicted by SPARTACUS agrees quite well with Monte Carlo

• The entrapment mechanism appears to win over side-illumination, implying 

shortwave 3D effects warm the climate system

• Very dependent on cloud size, which might not be realistic for these CRM 

scenes but needs to be parameterized in any global simulation
21
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Offline 3D radiative effect…

22

c
o
o
lin

g
w

a
rm

in
g



Offline 3D radiative effect…
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• 25-year free-running coupled simulation of the IFS

• Positive feedback in the Arctic associated with clouds and sea ice

…online impact in a climate simulation

Better agreement with 

annual cycle of observed 

sea ice
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• SPARTACUS technique to represent 3D 

interaction of radiation with clouds can be 

applied to trees (Hogan et al., GMD 2018) 

and buildings (Hogan, BLM 2019)

• Currently testing offline, but could be used to 

improve representation of forests and cities 

in IFS / OpenIFS in future

Towards “SPARTACUS-Surface”

23

• We want net radiative fluxes into ground, walls

roofs, vegetation and air, to be used in energy-

balance calculations together with turbulent fluxes

Russell Square area of London
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Example profiles of flux and net absorption

• Meg Stretton’s PhD project: compare profiles to explicit 

calculations using DART model

• Which details of an urban scene really matter which can be 

safely ignored? What level of detail can be justified in a 

weather or climate model?

•

2467

2-m vertical resolution
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Example profiles of flux and net absorption

• Meg Stretton’s PhD project: compare profiles to explicit 

calculations using DART model

• Which details of an urban scene really matter which can be 

safely ignored? What level of detail can be justified in a 

weather or climate model?

•

2468

2-m vertical resolution



Efficiency: temporal versus spatial resolution

• Radiation is now 5% of high-resolution (HRES) model time, compared to 19% a decade ago

• Cost of radiation is a trade-off between temporal/spatial/spectral resolution and physical sophistication, and 

compared to other global NWP centres, ECMWF has lowest temporal/spatial resolution and highest spectral 

resolution (Met Office uses 3.7 times fewer spectral intervals!)
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Efficiency: temporal versus spatial resolution

• Radiation is now 5% of high-resolution (HRES) model time, compared to 19% a decade ago

• Cost of radiation is a trade-off between temporal/spatial/spectral resolution and physical sophistication, and 

compared to other global NWP centres, ECMWF has lowest temporal/spatial resolution and highest spectral 

resolution (Met Office uses 3.7 times fewer spectral intervals!)

• Spatial coarsening is severe, but thanks to approximate radiation updates, 6.25x more spatial resolution 

(and cost) gives only marginal improvement in 2-m temperature, whereas reducing radiation timestep 

from 3h to 1h improves forecasts by 2-4%

• How can we afford even more frequent radiation and more physical sophistication (e.g. 3D effects)?
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How can we optimize the spectral integration?

26

RRTM-G uses 16 LW bands…

Water vapour spectrum
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• Three options under consideration:

– RRTMGP: optimized RRTM-G from U. Colorado

– Neural network: collaboration with NVIDIA

– Full-spectrum correlated-k scheme (Pawlak et al. 2014, Hogan 2010)
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How can we optimize the spectral integration?

26

RRTM-G uses 16 LW bands… reorder and discretize to 140 spectral intervals

Water vapour spectrum

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FSCK reorders the entire spectrum: only 30-35 intervals required for same accuracy?

• Three options under consideration:

– RRTMGP: optimized RRTM-G from U. Colorado

– Neural network: collaboration with NVIDIA

– Full-spectrum correlated-k scheme (Pawlak et al. 2014, Hogan 2010)

RMSE

~0.04 K d-1

below 40 km

Hogan (JAS 2010)



Summary and outlook

• Modular design of ecRad makes it well suited for research and operational use

– We can test alternative modules (e.g. new solvers) while keeping everything else fixed

– ecRad has been implemented in IFS, MesoNH and ICON models

• Offline version (available under an identical license to OpenIFS) helps research work

– Offline ecRad has >20 users worldwide

– Easier to implement and test new features offline

• Outlook for the “Grand Challenges” in the coming years

– Overhaul surface treatment, including 3D interactions with cities and forests

– Package of physically-based improvements to clouds

– Role of aerosols in predictability; upgrade water vapour continuum

– Remove middle-atmosphere temperature bias via new UV solar spectrum and ozone 

– Much more efficient gas optics and spectral integration

27



Further reading

• Radiation in NWP (ECMWF Technical memo, 2017)

28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

• ecRad (JAMES 2018)


