

AN AVAILABLE POTENTIAL ENERGY BUDGET FOR AN AXISYMMETRIC TROPICAL CYCLONE

Bethan Harris

Dr Rémi Tailleux, Dr Chris Holloway, Prof. Pier Luigi Vidale

OVERVIEW

- What is Available Potential Energy (APE) density?
- What are the advantages of using APE theory to study TCs?
- APE budget for a simple axisymmetric model (Rotunno & Emanuel, 1987)
- Future development

APE DENSITY

- Energy available for reversible conversion to kinetic energy; local form derived by *Andrews* (1981), *Holliday and McIntyre* (1981), generalised by *Tailleux* (2018)
- APE density e_a defined as:

$$e_{a} = \int_{z}^{z_{r}} g \frac{\alpha \left(\theta_{e}, r_{t}, p_{r}\left(z'\right)\right) - \alpha_{r}\left(z'\right)}{\alpha_{r}\left(z'\right)} dz'$$

- Measured relative to a hydrostatic reference state
- Reference height z_r defined as the nearest Level of Neutral Buoyancy

WHY USE APE?

- Different climate models at similar horizontal resolutions can produce very different distributions of TC intensity (Shaevitz et al. 2014) — not well understood how model differences lead to differences in TCs
- Representation of moisture, convection and the coupling between them identified as important factors (Kim et al. 2018)
- APE budget offers opportunity to link moist processes and convection to intensification

WHY USE APE?

- Previous energetic studies of TCs have employed budgets of latent energy (LE = Lq_v) and total potential energy (TPE = c_vT+gz) (e.g. Hack & Schubert 1986, Hogsett & Zhang 2009)
- Most of the TPE is never converted into kinetic energy: APE tells us more about energy available for intensification/maintenance of TC

APE density evolves as:

$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}}\frac{\mathrm{D}\theta_{e}}{\mathrm{D}t} + \overline{\rho}G_{r_{t}}\frac{\mathrm{D}r_{t}}{\mathrm{D}t} - \overline{\rho}bw + \dots$$

• θ_e and r_t are approximately conserved variables in model, but other pairs of variables can be equivalently used

$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}}\frac{\mathrm{D}\theta_{e}}{\mathrm{D}t} + \overline{\rho}G_{r_{t}}\frac{\mathrm{D}r_{t}}{\mathrm{D}t} + \overline{\rho}bw + \dots$$

generation/dissipation by diabatic processes

surface fluxes

$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}}\frac{\mathrm{D}\theta_{e}}{\mathrm{D}t} + \overline{\rho}G_{r_{t}}\frac{\mathrm{D}r_{t}}{\mathrm{D}t} + \overline{\rho}bw + \dots$$

generation/dissipation by diabatic processes

- surface fluxes
- mixing
- precipitation

$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}}\frac{D\theta_{e}}{Dt} + \overline{\rho}G_{r_{t}}\frac{Dr_{t}}{Dt} - \overline{\rho}bw + \dots$$

thermodynamic efficiencies

• functions of temperature & humidity in situ and at reference height

$$\frac{\partial (\overline{\rho}e_a)}{\partial t} = \overline{\rho} G_{\theta_e} \frac{D\theta_e}{Dt} + \overline{\rho} G_{r_t} \frac{Dr_t}{Dt} - \overline{\rho}bw + \dots$$

thermodynamic efficiencies

 functions of temperature & humidity in situ and at reference height

$$G_{\theta_e} = c_p \frac{T_0 - T_r}{\theta_e} \qquad G_{r_t} = \frac{1}{(1 + r_t)^2} \left[\mu_0 - \mu_r - (T_0 - T_r) \frac{\partial \mu}{\partial T} \right]$$

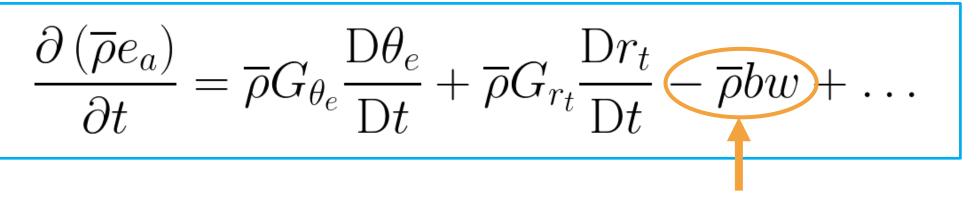
$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}} \frac{D\theta_{e}}{Dt} + \overline{\rho}G_{r_{t}} \frac{Dr_{t}}{Dt} - \overline{\rho}bw + \dots$$

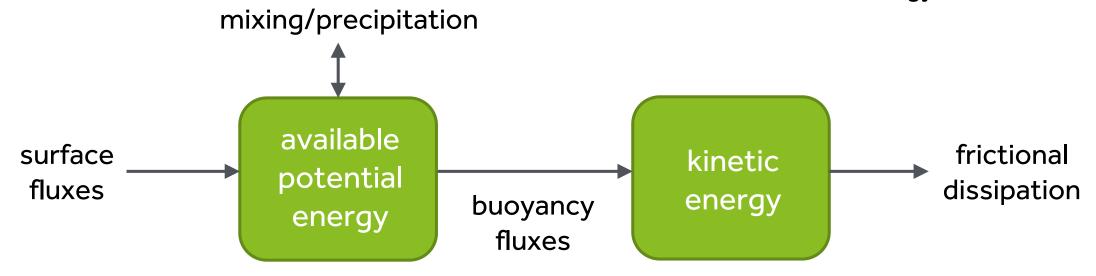
thermodynamic efficiencies

- functions of temperature & humidity in situ and at reference height
- A process may be either a source or a sink of APE depending on sign of efficiency

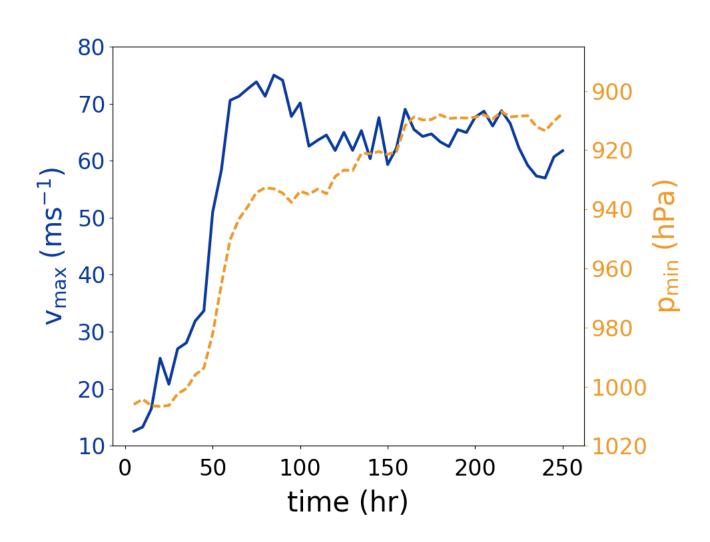
$$\frac{\partial (\overline{\rho}e_a)}{\partial t} = \overline{\rho}G_{\theta_e} \frac{\mathrm{D}\theta_e}{\mathrm{D}t} + \overline{\rho}G_{r_t} \frac{\mathrm{D}r_t}{\mathrm{D}t} + \overline{\rho}bw + \dots$$

n/dissinat


generation/dissipation by diabatic processes

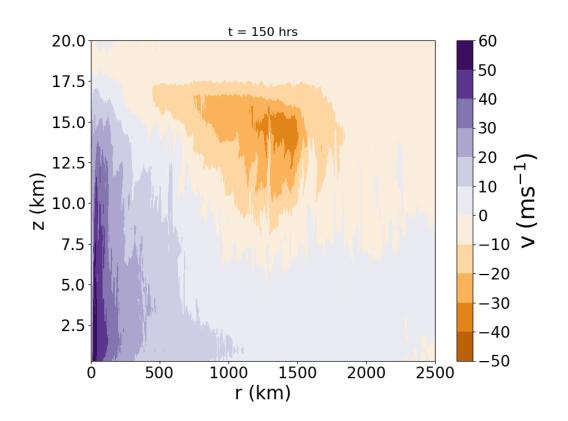

$$\frac{\partial \left(\overline{\rho}e_{a}\right)}{\partial t} = \overline{\rho}G_{\theta_{e}}\frac{\mathrm{D}\theta_{e}}{\mathrm{D}t} + \overline{\rho}G_{r_{t}}\frac{\mathrm{D}r_{t}}{\mathrm{D}t} - \overline{\rho}bw + \dots$$

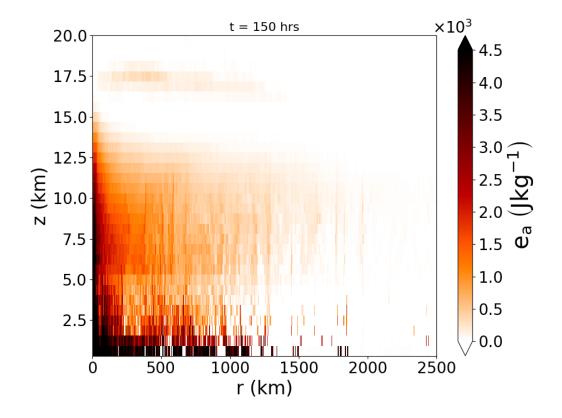
exchange with vertical kinetic energy



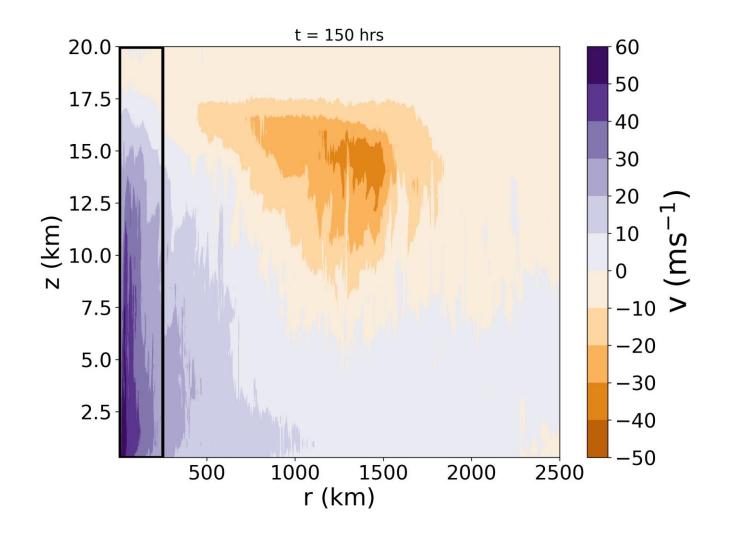
exchange with vertical kinetic energy

AXISYMMETRIC MODEL

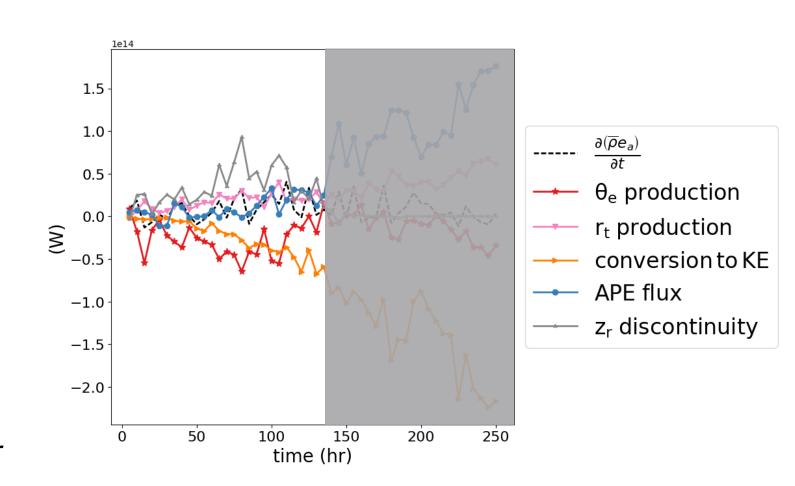



- Rotunno & Emanuel (1987)
- Microphysics modified by Craig (1995, 1996) include ice in θ_e
- 2.5 x 0.625 km resolution
- Constant SST
- Prescribe initial vortex
- Model initialised with Jordan tropical mean sounding – use as reference state

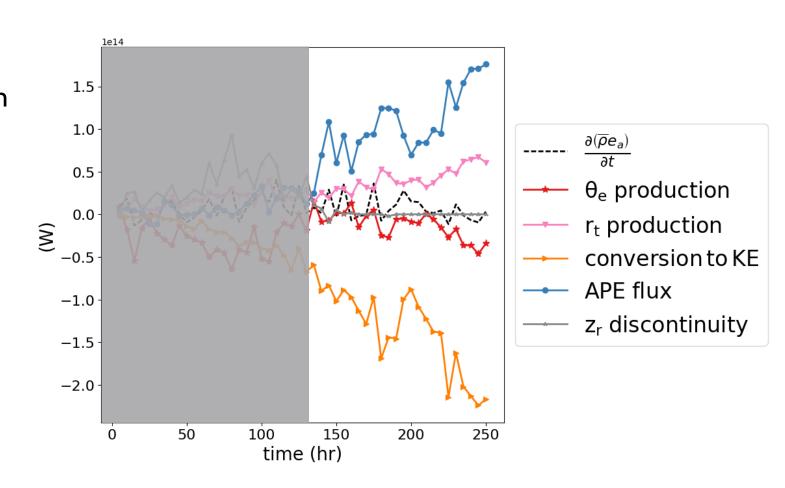
APE DENSITY


- Storage of APE in cyclone due to warm core
- High APE in eyewall due to warming by latent heat release
- High APE near surface due to heating by surface fluxes

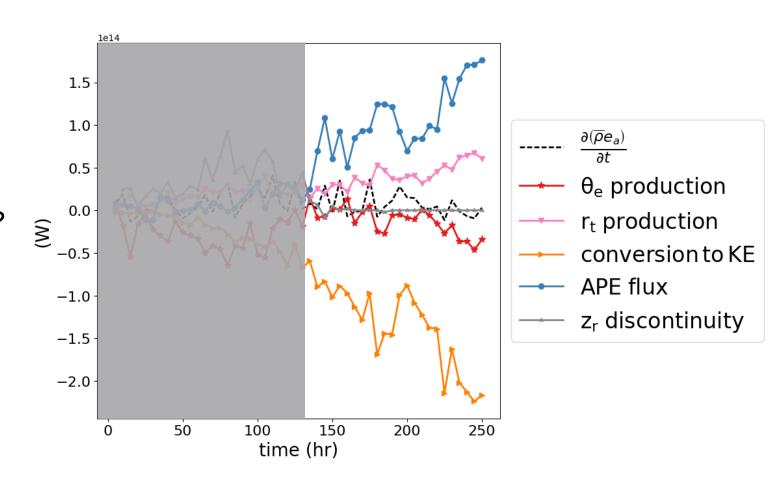
- Integrate APE budget over all grid points with $r < 250 \, \mathrm{km}$ (solid box)
- What are the sources/sinks of APE in this region?

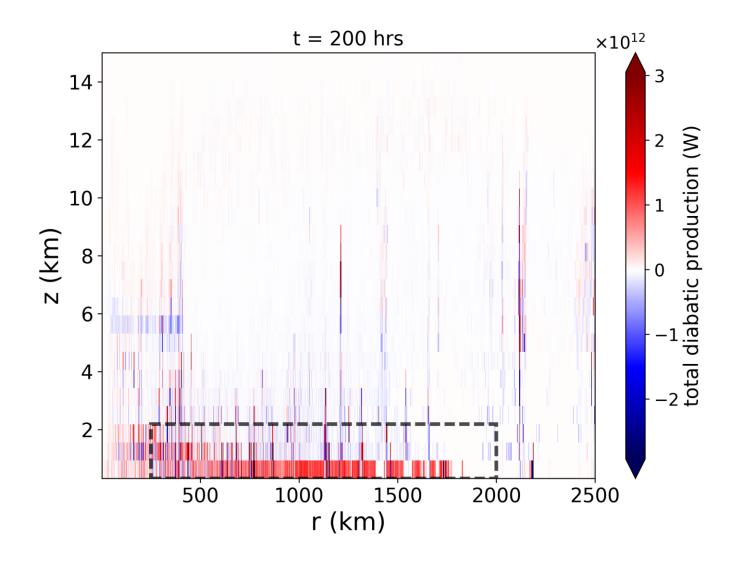

 Very different budget features in intensifying vs mature stages

Intensification stage


- Large contribution due to discontinuous jumps in reference heights
- Occurs when some parcels are buoyant and others aren't
- Partitioning between APE and background potential energy changes
- Previously unrecognised behaviour of APE density

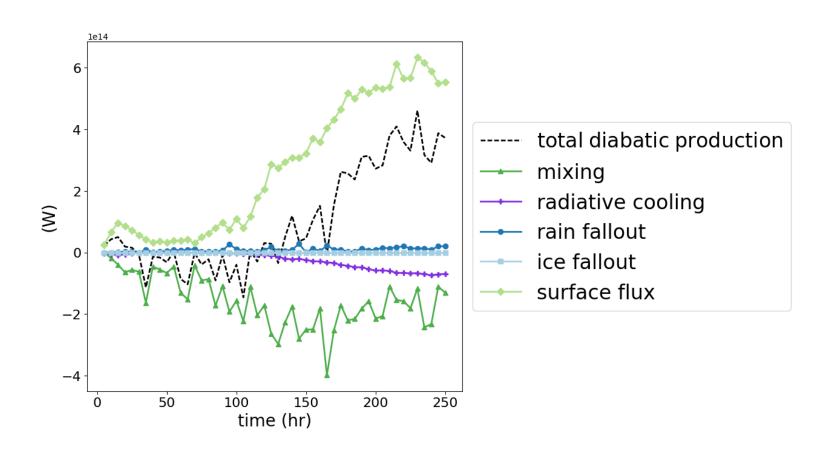
Mature stage


- Source of APE is flux entering region via radial inflow at low levels
- Agrees with previous latent energy budgets (*Kurihara 1975*)
- Import of APE balanced by conversion to KE
- Two production terms balance due to opposing effects of rainfall


Mature stage

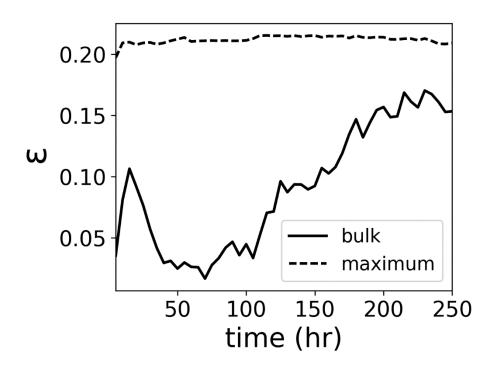
- Production in regions of highest wind less important than transport by secondary circulation
 - Where and how is APE produced?

APE PRODUCTION



- Total diabatic production (both θ_e and r_t) chiefly in surface parcels
- Budget diabatic production in dashed box (inflow region)

APE PRODUCTION BUDGET: INFLOW


- APE is mostly generated by surface fluxes (primarily latent heat flux) in inflow region
- This is transported to provide the main APE source for the inner regions of the TC
- Subgrid diffusive mixing acts to reduce surface source of APE

SURFACE APE EFFICIENCY

Define efficiency of surface parcels:

$$\varepsilon = \frac{\text{total APE production by surface fluxes}}{\text{total surface enthalpy flux}}$$

- Maximum efficiency 20% ≈ Carnot efficiency of TC
- Compare with 1% efficiency when using total potential energy budget (Hack & Schubert, 1986)
- Bulk efficiency varies with time as more parcels become buoyant

SUMMARY

- Possible to construct a closed budget of Available Potential Energy density for a TC
- Main energy supply for TC is the generation of Available Potential Energy via surface fluxes
- Surface enthalpy fluxes generate APE with a maximum efficiency of approximately 20%, and an overall efficiency that varies in time
- For inner regions, inward transport of APE more important than local production
- Import of APE balanced by conversion to KE

FUTURE DIRECTIONS

- Does the temporal variation of APE efficiency play an important role in governing intensification?
- Can APE budget provide physical explanations for how different treatments of moisture and convection in models lead to differences in TCs?
 - Apply budget to convection-permitting Met Office regional NWP models, and high-resolution climate model output

SUMMARY

- Possible to construct a closed budget of Available Potential Energy density for a TC
- Main energy supply for TC is the generation of Available Potential Energy via surface fluxes
- Surface enthalpy fluxes generate APE with a maximum efficiency of approximately 20%, and an overall efficiency that varies in time
- For inner regions, inward transport of APE more important than local production
- Import of APE balanced by conversion to KE

REFERENCES

Andrews DG. 1981. A note on potential energy density in a stratified compressible fluid. *J. Fluid Mech.,* **107**: 227–236.

Craig GC. 1995. Radiation and polar lows. Q. J. R. Meteor. Soc., 121(521): 79-94.

Craig GC. 1996. Numerical experiments on radiation and tropical cyclones. Q. J. R. Meteor. Soc., 122(530): 415-422.

Emanuel, K. A. 1988. The maximum intensity of hurricanes. J. Atmos. Sci., 45(7): 1143-1155.

Hack, J. J., Schubert, W. H. 1986. Nonlinear response of atmospheric vortices to heating by organized cumulus convection. *J. Atmos. Sci.*, **43**(15): 1559-1573.

Hogsett, W., Zhang, D. L. 2009. Numerical simulation of Hurricane Bonnie (1998). Part III: Energetics. J. Atmos. Sci., 66(9): 2678-2696.

Holliday D, Mcintyre ME. 1981. On potential energy density in an incompressible, stratified fluid. *J. Fluid Mech.*, **107**: 221–225.

Kim, D. et al. 2018. Process-oriented diagnosis of tropical cyclones in high-resolution GCMs. J. Clim., 31(5): 1685-1702.

Kurihara, Y. 1975. Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. *J. Atmos. Sci.*, **32**(1): 25-59.

Pauluis, O. 2011. Water vapor and mechanical work: A comparison of Carnot and steam cycles. J. Atmos. Sci., 68(1): 91-102.

Rotunno R, Emanuel KA. 1987. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. *J. Atmos. Sci.*, **44**(3): 542-561.

Tailleux, R. 2018. Local available energetics of multicomponent compressible stratified fluids. J. Fluid Mech., 842.