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OVERVIEW

•What is Available Potential Energy (APE) density?

•What are the advantages of using APE theory to study TCs?

•APE budget for a simple axisymmetric model (Rotunno & Emanuel, 1987) 

•Future development



APE DENSITY

• Energy available for reversible conversion to kinetic energy; local form derived 
by Andrews (1981), Holliday and McIntyre (1981), generalised by Tailleux (2018)

• APE density 𝑒𝑎 defined as:

• Measured relative to a hydrostatic reference state

• Reference height 𝑧𝑟 defined as the nearest Level of Neutral Buoyancy



WHY USE APE?

• Different climate models at similar horizontal resolutions can produce very 
different distributions of TC intensity (Shaevitz et al. 2014) – not well understood 
how model differences lead to differences in TCs

• Representation of moisture, convection and the coupling between them identified 
as important factors (Kim et al. 2018)

• APE budget offers opportunity to link moist processes and convection to 
intensification



WHY USE APE?

• Previous energetic studies of TCs have employed budgets of latent energy (LE =
𝐿𝑞𝑣) and total potential energy (TPE = 𝑐𝑣𝑇 + 𝑔𝑧) (e.g. Hack & Schubert 1986, 
Hogsett & Zhang 2009)

• Most of the TPE is never converted into kinetic energy: APE tells us more about 
energy available for intensification/maintenance of TC



• APE density evolves as:

• 𝜃𝑒 and 𝑟𝑡 are approximately conserved variables in model, but other pairs 
of variables can be equivalently used

APE EVOLUTION
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APE EVOLUTION

thermodynamic 
efficiencies

• functions of temperature & humidity 
in situ and at reference height 

• A process may be either a source or a sink of APE 
depending on sign of efficiency
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AXISYMMETRIC MODEL

• Rotunno & Emanuel (1987)

• Microphysics modified by 
Craig (1995, 1996) –
include ice in 𝜃𝑒

• 2.5 x 0.625 km resolution

• Constant SST

• Prescribe initial vortex

• Model initialised with Jordan 
tropical mean sounding –
use as reference state



APE DENSITY
• Storage of APE in cyclone due to warm core

• High APE in eyewall due to warming by latent heat release

• High APE near surface due to heating by surface fluxes



• Integrate APE budget over all 
grid points with 𝑟 < 250 km 
(solid box)

• What are the sources/sinks of 
APE in this region?

APE BUDGET: INNER REGION



• Very different budget 
features in intensifying vs 
mature stages

APE BUDGET: INNER REGION



Intensification stage

• Large contribution due to 
discontinuous jumps in reference 
heights

• Occurs when some parcels are 
buoyant and others aren’t

• Partitioning between APE and 
background potential energy 
changes

• Previously unrecognised behaviour 
of APE density

APE BUDGET: INNER REGION



Mature stage

• Source of APE is flux entering region 
via radial inflow at low levels

• Agrees with previous latent energy 
budgets (Kurihara 1975)

• Import of APE balanced by 
conversion to KE

• Two production terms balance due 
to opposing effects of rainfall

APE BUDGET: INNER REGION



Mature stage

• Production in regions of highest 
wind less important than transport 
by secondary circulation

• Where and how is APE produced?

APE BUDGET: INNER REGION



• Total diabatic production (both 
𝜃𝑒 and 𝑟𝑡) chiefly in surface 
parcels

• Budget diabatic production in 
dashed box (inflow region)

APE PRODUCTION



• APE is mostly generated 
by surface fluxes 
(primarily latent heat flux) 
in inflow region 

• This is transported to 
provide the main APE 
source for the inner 
regions of the TC

• Subgrid diffusive mixing 
acts to reduce surface 
source of APE

APE PRODUCTION BUDGET: INFLOW



• Define efficiency of surface parcels:

𝜀 =
total APE production by surface fluxes

total surface enthalpy flux

SURFACE APE EFFICIENCY

• Maximum efficiency 20% ≈ Carnot efficiency 
of TC

• Compare with 1% efficiency when using total 
potential energy budget (Hack & Schubert, 1986)

• Bulk efficiency varies with time as more 
parcels become buoyant



• Possible to construct a closed budget of Available Potential Energy density 
for a TC

• Main energy supply for TC is the generation of Available Potential Energy 
via surface fluxes

• Surface enthalpy fluxes generate APE with a maximum efficiency of 
approximately 20%, and an overall efficiency that varies in time

• For inner regions, inward transport of APE more important than local 
production 

• Import of APE balanced by conversion to KE

SUMMARY



• Does the temporal variation of APE efficiency play an important role in 
governing intensification? 

• Can APE budget provide physical explanations for how different treatments 
of moisture and convection in models lead to differences in TCs?

• Apply budget to convection-permitting Met Office regional NWP models, 
and high-resolution climate model output

FUTURE DIRECTIONS



• Possible to construct a closed budget of Available Potential Energy density for a TC

• Main energy supply for TC is the generation of Available Potential Energy via surface 
fluxes

• Surface enthalpy fluxes generate APE with a maximum efficiency of approximately 
20%, and an overall efficiency that varies in time

• For inner regions, inward transport of APE more important than local production 

• Import of APE balanced by conversion to KE

SUMMARY
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