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OVERVIEW B8 Reading

* What is Available Potential Energy (APE) density?

* What are the advantages of using APE theory to study TCs?

* APE budget for a simple axisymmetric model (Rotunno & Emanuel, 1987)

* Future development



APE DENSITY
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* Energy available for reversible conversion to kinetic energy; local form derived
by Andrews (1981), Holliday and Mcintyre (1981), generalised by Tailleux (2018)

* APE density e, defined as:

zp

a (Oc, e, pr () — ar (2)

z % (Z’)

dz’

* Measured relative to a hydrostatic reference state

* Reference height z,. defined as the nearest Level of Neutral Buoyancy



WHY USE APE? B8 Reading

* Different climate models at similar horizontal resolutions can produce very
different distributions of TC intensity (Shaevitz et al. 2014) — not well understood
how model differences lead to differences in TCs

* Representation of moisture, convection and the coupling between them identified
as important factors (Kim et al. 2018)

* APE budget offers opportunity to link moist processes and convection to
intensification



WHY USE APE? B8 Reading

* Previous energetic studies of TCs have employed budgets of latent energy (LE =
Lg,) and total potential energy (TPE = ¢, T + gz) (e.g. Hack & Schubert 1986,
Hogsett & Zhang 2009)

* Most of the TPE is never converted into kinetic energy: APE tells us more about
energy available for intensification/maintenance of TC



APE EVOLUTION B Reading

* APE density evolves as:

0(pe.) _ ., DO. _ _ Dry
e - 5G,
ot 70Dy TPy

obw + . ..

* 0, and r; are approximately conserved variables in model, but other pairs
of variables can be equivalently used



APE EVOLUTION B Reading

generation/dissipation
by diabatic processes
* surface fluxes



APE EVOLUTION B Reading
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generation/dissipation
by diabatic processes
* surface fluxes
* MiXing
* precipitation



APE EVOLUTION B Reading

0(pe.) _~~DO. _ _—~Dry
ot Y0y Py
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thermodynamic
efficiencies

* functions of temperature & humidity
in situ and at reference height



APE EVOLUTION B Reading

0(pes) _~~DO. __—~Dry _
= pGy, - oGy, obw + . ..
ot Dt Dt
thermodynamic
efficiencies
* functions of temperature & humidity
in situ and at reference height
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APE EVOLUTION
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0 (peq) D6. Dry

= oG - 0G4,
ot P00y Py

obw + . ..

thermodynamic
efficiencies

* functions of temperature & humidity
in situ and at reference height

* A process may be either a source or a sink of APE

depending on sign of efficiency
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APE EVOLUTION
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generation/dissipation
by diabatic processes
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exchange with
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APE EVOLUTION
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AXISYMMETRIC MODEL B8 Reading
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* Storage of APE in cyclone due to warm core

* High APE in eyewall due to warming by latent heat release

* High APE near surface due to heating by surface fluxes
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APE BUDGET: INNER REGION B8 Reading
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APE BUDGET: INNER REGION

* Very different budget
features inintensifying vs

mature stages
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APE BUDGET: INNER REGION B8 Reading

Intensification stage

« Large contribution due to =
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APE BUDGET: INNER REGION

Mature stage

» Source of APE is flux entering region

via radial inflow at low levels 1.0

0.5 1

* Agrees with previous latent energy
budgets (Kurihara 1975) S

_0.5 i

* Import of APE balanced by
conversion to KE
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* Two production terms balance due 2.0

to opposing effects of rainfall
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APE BUDGET: INNER REGION

Mature stage

* Productionin regions of highest
wind less important than transport
by secondary circulation

« Where and how is APE produced?
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APE PRODUCTION
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* Total diabatic production (both
6, and 1;) chiefly in surface
parcels

* Budget diabatic productionin
dashed box (inflow region)
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APE PRODUCTION BUDGET: INFLOW  Breading
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* APE is mostly generated
by surface fluxes
(primarily latent heat flux)
in inflow region

* Thisis transported to
provide the main APE
source for the inner
regions of the TC

 Subgrid diffusive mixing
acts to reduce surface
source of APE



SURFACE APE EFFICIENCY B8 Reading

* Define efficiency of surface parcels:

_ total APE production by surface fluxes

E =

total surface enthalpy flux

0.207

0.15-

0.101
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—  bulk

* Maximum efficiency 20% = Carnot efficiency
of TC

* Compare with 1% efficiency when using total
potential energy budget (Hack & Schubert, 1986)
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* Bulk efficiency varies with time as more
~==" maximum parcels become buoyant
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SUMMARY B8 Reading

* Possible to construct a closed budget of Available Potential Energy density
foraTC

* Main energy supply for TC is the generation of Available Potential Energy
via surface fluxes

 Surface enthalpy fluxes generate APE with a maximum efficiency of
approximately 20%, and an overall efficiency that varies in time

* Forinner regions, inward transport of APE more important than local
production

* Import of APE balanced by conversion to KE



FUTURE DIRECTIONS B8 Reading

* Does the temporal variation of APE efficiency play animportant rolein
governing intensification?

* Can APE budget provide physical explanations for how different treatments
of moisture and convection in models lead to differences in TCs?

- Apply budget to convection-permitting Met Office regional NWP models,
and high-resolution climate model output



SUMMARY B8 Reading

* Possible to construct a closed budget of Available Potential Energy density fora TC

* Main energy supply for TC is the generation of Available Potential Energy via surface
fluxes

* Surface enthalpy fluxes generate APE with a maximum efficiency of approximately
20%, and an overall efficiency that varies in time

* Forinner regions, inward transport of APE more important than local production

* Import of APE balanced by conversion to KE



REFERENCES BB i

Andrews DG. 1981. A note on potential energy density in a stratified compressible fluid. J. Fluid Mech., 107: 227—-236.
Craig GC. 1995. Radiation and polar lows. Q. J. R. Meteor. Soc., 121(521): 79-94.

Craig GC. 1996. Numerical experiments on radiation and tropical cyclones. Q. J. R. Meteor. Soc., 122(530): 415-422.
Emanuel, K. A. 1988. The maximum intensity of hurricanes. J. Atmos. Sci., 45(7): 1143-1155.

Hack, J. J., Schubert, W. H. 1986. Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos.
Sci., 43(15):1559-1573.

Hogsett, W., Zhang, D. L. 2009. Numerical simulation of Hurricane Bonnie (1998). Part lll: Energetics. J. Atmos. Sci., 66(9): 2678-2696.
Holliday D, Mcintyre ME. 1981. On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107:221-225.

Kim, D. et al. 2018. Process-oriented diagnosis of tropical cyclones in high-resolution GCMs. J. Clim., 31(5): 1685-1702.

Kurihara, Y. 1975. Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32(1): 25-59.
Pauluis, O. 2011. Water vapor and mechanical work: A comparison of Carnot and steam cycles. J. Atmos. Sci., 68(1): 91-102.

Rotunno R, Emanuel KA. 1987. An air-sea interaction theory for tropical cyclones. Part Il: Evolutionary study using a nonhydrostatic
axisymmetric numerical model. J. Atmos. Sci., 44(3): 542-561.

Tailleux, R. 2018. Local available energetics of multicomponent compressible stratified fluids. J. Fluid Mech., 842.



