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within ECMWF
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* Cycle 43r3 — we're the first to use this i e
with openlFS! s =
* New developments in dynamics (such as T =T
. . Lake meandepth,m | nterpotate o mogelgrid
cubic octahedral grid in cy43r3 reduces
cost and improves mass conservation). -EaSEEEEREEE L = o S l
* ecRAD (new modular radiation scheme) - ;:‘
» Lake model (depth is the key parameter) SR
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What we learned about OpenlFS
developments outside ECMWEF: 1

* OpenlFS can be run using 4 raspberry
pi’s glued to be a piece of wood.

1. get instructions

-
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3. compute

e openifs@home is launched and
results from 571 integrations were
shown! (80% of 2000 integrations
were returned in 50hrs).

4. upload output files

5. report results

* Uncertainty in parametrizations can
be investigated by tiling regions with —
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single column models at every grid -

point.




What we learned about OpenlFS ECEA - ERA Interim

developments outside ECMWF: 2 N e
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* OpenlFS initial conditions can be EEEEEm IRy caEnEf d
(more) easily generated from ERA e e
reanalyses with AutoSubmit. IXaVier Yepes Arbds I - T e
* OpenlFS (instead of IFS) will be used
in the next generation of the EC- B hevo  huime e
Earth mOdeI (ECEarth4). OCI-OIFS LR TL159L91 ORCAOS L46 gg;;g%PU No WAM

* FOCI-OpenlFS exists as a flexible
climate model for high-resolution

I . L o ORCAQ5 L46 (+ AGRIF nest over
S I m u at I O n S OCI-OIFS ORION U2k “ORION12") HEMCENr Eodalle Southern Ocean

OCI-OIFS MR T.511L91 Ijoakim Kjellson h’a'ySiSi” No WAM

ORCAO0S L46 (+ Planned for new AGRIF nest over
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OCI-OIFS VIKING  (VPL3E VIKING10X) project North Atlantic



What we learned about science
being pursued with OpenlFS

e OpenlFS is a great tool for analysis of case studies (e.g.

Hurricanes Debby and Ophelia)

* OpenlFS is a great tool for idealised applications such as the

Held-Suarez tEStI Lorenzo Silvestri I

* OpenlFS can be used for ensemble forecasts (Typhoon Damrey)

* OpenlFS can be used for sensitivity studies (flattening the south
African orography decreases the number of tropical lows

Hurricane Ophelia — contributions to total diabatic heating
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What we learnt about diabatic
processes and forecast error: 1

* Atmospheric rivers and precipitation
from ascending warm conveyor belts can
have a common cause: a feeder
airstream.

» Stronger warm conveyor belts (i.e. more
latent heating) are associated with more
intense cyclones (for C1 cyclones).

* The effects of heating in large-scale
vertical wind shear are systematic and
can cause (real) negative PV.

WCB air mass at low levels [10° kg]
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What we learnt about diabatic
processes and forecast error: 2

* Warm conveyor belts outflows amplify ridges and the
tropopause PV gradient and jet speed.

80N

* Forecast busts in ridge building can occur if poor diabatic -
processes lead to poor representation of warm conveyoun. =osss——

belt branches.

40N —

* Uncertainty growth is associated with moist processes:

warm conveyor belts and mesoscale convection.
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e Parametrization improvements such as prognostic
entrainment (memory) can reduce model biases.
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What we learnt about diabatic C““”“‘“jj“ /

processes and forecast error: 3

* Moisture injection can be critical to predict which
African Easterly Waves will trigger tropical cyclones.
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* There is little to be gained from reducing initial
condition error at the synoptic scale in terms of
global predictability, but improvements at the sub-
synoptic scales are possible.

* It is possible to construct a closed budget of

Available Potential Energy density for a tropical
CyC I O N e . mixing/precipitation
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What we learnt about diabatic processes and

forecast error: 4

* For southern hemisphere meridional
moisture flux (MMF) variability the
strongest relationship is with genesis
latitude (closely followed by speed)
but changing the intensity of
cyclones has a small impact.
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Thanks!

* To Gabi, Marcus and Glenn from ECMWE for all their work in preparing
the case study

* To Maria for supporting and troubleshooting all our IT needs

* To Kathryn for all the practical arrangements and behind-the-scenes
work

* To all of our speakers for their informative and intriguing talks

* And to all of the participants for some imaginative experiments, nice
posters and contributions to discussions
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