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The ECMWF hydrostatic dynamical core equations
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η : hybrid vertical coordinate

𝑽𝒉: horizontal momentum

T: temperature

Tv: virtual temperature (used as spectral 

variable)

qx: specific humidity, specific ratios for cloud 

fields and other tracers x,  δ=cpv/cpd

Φ: geopotential

p : pressure

ω=dp/dt : diagnostic vertical velocity

P: physics forcing terms

▪ Primitive equation model (hydrostatic, shallow atmosphere)

How do we solve these equations?

▪ Non-hydrostatic, version available but currently not in operational use in ECMWF
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Grid-point calculations

-semi-Lagrangian advection

-physical parametrizations

-products of terms

Fourier space

Spectral calculations

-horizontal gradients

-semi-implicit correction 

-horizontal diffusion

FFT

LT

Inverse FFT

Inverse LT

Fourier space

FFT: Fast Fourier Transform,  LT: Legendre Transform

Solving the equations: spectral transform Semi-implicit semi-Langrangian (SISL) method

Vertical discretization

▪ Hybrid pressure based 

vertical coordinate η(p)
▪ Finite Element 

discretization based on 

cubic spline elements

▪ Accurate vertical 

integrals

▪ Accurate vertical 

velocity leading to 

accurate vertical 

transport

(Reference: Untch and Hortal, 

QJRMS 2004)



Spectral transform on spherical harmonics
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Spherical harmonics are the 

eigenfunctions of the Laplace operator =>  

elliptic equations can be solved efficiently 

due to their simple discrete structure ☺

Important property given that at each 

timestep the set of equations is reduced to 

an elliptic equation.

Earth radius
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Improved accuracy, efficiency and scalability with 
octahedral reduced cubic A-grid  

Latitudinal variation of resolution for standard cubic grid and octahedral cubic 

grid 

Collignon projection on the sphere: Nlati = 4 × i + 16,  i = 1, . . . ,N

Benefits of cubic octahedral grid 

compared with old linear grid:

• Improved effective resolution

• Improved mass conservation

• Improved efficiency and scalability 

(higher gridpoint resolution, same 

spectral truncation)

Above: cubic versus linear grid run at same 

gridpoint resolution. Plotted: forecast days / day 

per number of cores. Note that at high number of 

cores the rate achieved with a cubic grid is twice 

as large as the one by the linear!
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Reference: “A new grid for the IFS” ECMWF newsletter 146, Winter 2015-

2016, Malardel et al  
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Improvement in mass conservation with octahedral grid 
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• Global mass conservation error is reduced by a factor of 30

– No need to use de-aliasing in pressure gradient term, less 

numerical diffusion and improved accuracy



Virtues of semi-implicit semi-Lagrangian

techniques

Semi-Lagrangian (SL) semi-implicit (SI) technique is ideal for 

global NWP – stable, efficient and accurate integration of the 

governing equations

❑Unconditionally stable SL advection scheme having small 

phase speed errors with little numerical dispersion

✓ No CFL restriction in timestep! 

❑Unconditionally stable SI time stepping for the integration of  

fast changing forcing terms

✓ No timestep restriction from the integration of “fast

forcing” terms such as gravity wave  + acoustic terms 

(present in non-hydrostatic models)



What is a semi-Lagrangian advection 

scheme?

Semi-Lagrangian method  is a numerical technique for solving 

advection type PDEs which applies Lagrangian “thinking” on grid-

point models:

⧫ Resembles a “backward” Lagrangian method: for every 

discrete element (parcel) of the fluid a “backward” trajectory 

is computed

⧫ This means that, at each time-step the final location of a 

moving parcel is known (it is a grid-point) and the location 

that its trajectory started (departure point) must be found

⧫ As this computation is repeated at each timestep the grid is 

not allowed to deform



History of semi-Lagrangian method in IFS

⧫ The ECMWF model IFS (Integrated Forecast System) has been 

operating since 1979

⧫ Until the beginning of 1991 IFS is a spectral semi-implicit 

Eulerian model on a full Gaussian grid at T106 horizontal 

resolution and 19 levels

⧫ An increase to T231 L31 resolution was planned

⧫ This upgrade required at least 12 x available CPU power

⧫ Funding was available for 4 x CPU increase …

⧫ Upgrade was made possible only due to switching to:

⧫ A semi-Lagrangian scheme on a reduced Gaussian grid

⧫ The new model was 6 x faster!



The SL solution of the advection equation

Consider passive tracer linear advection equation:

At time t parcel is at d and at t +∆t arrives at a grid-point

⧫ Finding the “departure point” is an essential part of the technique:

⧫ Solution at t+Δt is obtained by interpolating the available (defined 

at time t) grid-point    -values at the DP

⧫ Advection term            is not explicitly computed – it is absorbed by the 

Lagrangian derivative (advection problem is reduced to interpolation)
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DP calculation in IFS and NWP models

In atmospheric flows wind field changes in space and time

⧫ To find departure points, solve equation:

where         the position and wind vector 

Second order mid-point rule was used in early versions of IFS:

⧫ To tackle implicitness departure point is computed iteratively

⧫ The scheme used currently in IFS is called SETTLS
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SETTLS: Stable Extrapolation Two Time Level 

Scheme
Taylor expansion to second order:
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Therefore DP can be computed by iterative sequence:
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AV: average value along SL trajectory

Reference: Hortal QJRMS 2002, doi:10.1002/qj.200212858314



Interpolation in the IFS semi-Lagrangian scheme
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After computing the departure points we need to:

• Interpolate the advected field to the DP  to obtain:

Interpolation must use (for stability) neighbouring to d.p. gridpoints

ECMWF model uses quasi-monotone quasi-cubic Lagrange interpolation
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Number of 1D cubic interpolations in 2D: 5 =>3D: 21 

(64pt  stencil)

To save computations: use cubic interpolation only for 

nearest neighbour rows and linear interpolation 

remaining rows.  “quasi-cubic interpolation”: 

3*cubic+2*linear interpolations in 2D

7*cubic+10*linear in 3D (32 pt stencil)
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Cubic Lagrange interpolation: ,



Shape-preserving (locally monotonic)  interpolation

• Creation of “artificial” maxima /minima

x

x
x

x

x x:  grid point values

x:  interpolated value

• Shape-preserving  (quasi-monotone) interpolation

- Alternative: Spline or Hermite interpolation (not used in IFS operationally)

x

- Quasi-monotone cubic interpolation: 
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φ: angle ෣𝐷𝑂𝐴 between position vectors rA and rD

SL advection on the sphere 
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• A semi-Lagrangian trajectory from D to A is an arc of a great circle

• When computing the DP we need to account for the impact of the Earth curvature to the 

wind vector that transports a parcel from D to A

• Apply rotation operator from D to A to take into account Earth’s curvature in DP 

iterations:
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Do SL iterations always converge?

▪ SETTLS scheme for computing the departure point is iterative

▪ Its convergence depends on Lipschitz number magnitude. Let rD , rD
[ν] 

the converged solution and an estimate at iteration number ν. Then:

Reference: Diamantakis & Magnusson MWR2016 doi:10.1175/MWR-D-15-0432.1

What happens in IFS?



Lipschitz numbers in IFS forecasts



DP convergence in typhoon Neoguri

• Model level near 850 hPa / 16km resolution

• Distance of two successive DP iterations scaled by gridlength

• Faster convergence when timestep reduced (not shown)

iter2–iter1 iter3–iter2

iter4–iter3 iter5–iter4



Revision of number of iterations in 41r2

Lack of adequate convergence became more noticeable at 9km res and that 

prompted increase from 3 to 5 iterations

RMSE of geopotential reduction by 

improved convergence of DP iteration

Tropical Cyclone PV x-section with  3, 5 and 

5 with ½ timestep departure point iterations



Numerical noise in upper stratosphere

▪ In “Sudden Stratospheric Warming” events noise is often seen in upper 

stratosphere and model underpredicts the temperature there

▪ The origin of the noise is the time extrapolation used in SETTLS

▪ IFS 41r1: noise reduction & accuracy improvement with change in the 

vertical part of 2nd order SETTLS i.e. 

▪ switch to a non-extrapolating 1st order version when sudden changes 

in vertical velocities occur in two consecutive timesteps (Reference: M. 

Diamantakis, ECMWF newsletter No.141 Autumn 2014)

noisy divergence 24hrs forecast: weak 

warming
no noise + “correct” 

warming (cycle 41r1)

(revised vertical scheme)SETTLS



Major SSW January 2013

Original (CONTROL) versus revised (NEW) SETTLS scheme



ECMWFSemi-Lagrangian semi-implicit technique in IFS    Slide 22

SSW case January 2013: Analysis animation

Original SETTLS extrapolation for 

DP calculation
Revised in the vertical SETTLS 

extrapolation for DP calculation

T analysis at 5hPa: 1  to 14 Jan 2013

GPSRO and other obs confirm that this 

is analysis represents better the truth



Combining SL with SI scheme to solve  the 

governing equations

2nd order SISL discretization (Crank-Nicolson) applied to m prognostic eqn: 

Split F and linearize fast nonlinear terms to simplify solution:

With previous splitting the two-time-level, 2nd order IFS discretization  

becomes (Temperton et al, QJRMS 2001) :
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The Helmholtz equation

We have m prognostic equations that are expensive to solve

Instead of solving the whole coupled system, with analytical 
manipulations we can eliminate its variables in terms of horizontal wind 
divergence deriving a single elliptic (Helmholtz) equation. Once this is 
solved all prognostic variables can be updated through “back-
substitution”.

• In the IFS the resulting Helmholtz equation has constant coefficients 
and is solved in spectral space very accurately and efficiently using 
spherical Harmonics properties

• Having a cheap solver + being able to use large ∆t (due to 
unconditional stability and good dispersion properties of SISL) 
explains why IFS is computationally a very efficient model.



Solving Helmholtz equation 

Eliminate variables we derive a Helmholtz equation wrt to D:  
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[in the presented discretization I have assumed α=1/2 (Crank-Nicolson), however, off-centring i.e. 

using α-value slightly >0.5 (0.55) is often used  by some models to control unwanted oscillations]
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• The above equation is further simplified to the form                                              

which can be easily solved exactly for each i

• Once divergence D at new time level is found the remaining fields can be 

computed through back-substitution
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Reference: Ritchie et al, MWR 1995 Vol 123 p. 489



NH-IFS: SI time stepping and stability

➢ The global non-hydrostatic IFS is more sensitive to explicit  

(using extrapolation) integration of the non-linear terms: 

instabilities occur

➢ An iterative approach can be used to avoid extrapolation and 

improve stability allowing long timesteps as in the hydrostatic:

⧫ ICI: Iterative Centred Implicit

⧫ It works like predictor-corrector but dynamics become 

twice as expensive: 

➔First predict state of prognostic variables at t+∆t using 

a 1st order scheme that doesn’t require extrapolation

➔ Recompute solution using the “predicted” values for 

those right hand side semi-implicit terms that must be 

computed at t+∆t



Limitations of the SISL approach

⧫ Not formally conserving

⧫ In long integrations mass drifts and needs to be “fixed” 

⧫ In IFS mass fixers are used for individual tracers and pressure 

(total mass of air) in long simulations

⧫ Scalability issues as resolution increases:

⧫ ECMWF spectral IFS: high global communication cost of 

spectral transforms + scalability/memory scalability of SL (very 

large halos to be filled, see GMD 11, 3409-3426, 2018)

⧫ Regular lat/lon gridpoint models: too much resolution near the 

poles (slow convergence for implicit solvers + large 

communication MPI overhead  )



Improved tracer Mass fixer in 43r3 

(carbon tracers)

Correction obtained using a Lagrange 

multiplier approach which ensures that 

the global norm of the difference from 

the original field is minimum

Reference: Diamantakis & Agusti-Panareda ECMWF Tech Memo 819, 2017



“Proportional” versus Bermejo and Conde 

mass fixer



Validation against CO2 observations

Error 

reduction 

with BC 

fixer



Average total column CH4 [ppb]

CH4 synoptic variability: 25 to 29th of March 2010 

SURFACE  FLUXES

TRANSPORT

CHEMISTRY

• Anthropogenic : EDGARv4.2  2008

• Near-real-time GFAS biomass 

burning

• Climatologies for other fluxes

Monthly mean 

loss rate 

climatology

High resolution 

IFS (16km, L137)

GOSAT’s view

Modelling atmospheric CH4 in the ECMWF Integrated Forecasting system



Code efficiency improvement: 

A single precision IFS

A single precision version of IFS has been developed

Efficiency gain for uncoupled (atmos) model 40%

Neutral in terms of forecast skill for a range of 
different resolutions compared with double precision 
version

Some deterioration in terms of mass conservation 
(mostly due to single precision spectral transform 
package) but at acceptable levels for NWP forecasts: 
use of mass (pressure) fixer eliminates geopotential 
biases
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European cold outbreak 5-day 9km forecast (T) valid 8/01/17

Total Mass 

change in 

a 10-day 

fc with SP, 

DP (new 

cubic and 

old linear 

grid) 

Reference: Vana et al, MWR 2017 doi: 10.1175/MWR-D-16-0228.1 
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Summary

• IFS relies on an efficient and accurate dynamical core that we constantly 

improve

• 43r3 compared with 40r1 (earlier version that OpenIFS was based) has some 

noticeable differences:

– A new grid that improves further the accuracy and efficiency of the model

– Improvements in the semi-Lagrangian scheme

– Improvements in air mass conservation and tracer mass conservation

– Option to run faster in single precision at the same level of accuracy as double 

precision

While we continue improving the spectral dynamical core we also develop a new 

compact stencil Finite Volume core that scales well at massively parallel 

architectures and conserves mass.

Thank you for your attention!
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