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The ECMWEF hydrostatic dynamical core equations

» Primitive equation model (hydrostatic, shallow atmosphere)

DV,

+ fkxV, +V, ®+ R, T, V,In p=P,
n : hybrid vertical coordinate

DT xT,w _p V: horizontal momentum
Dt (1+ (5 —l)q) P T T: temperature
T,: virtual temperature (used as spectral
Da, _ P variable)
Dt i a,: specific humidity, specific ratios for cloud

fields and other tracers x, 6=c, /c
(&) B) 0 8)

h ®: geopotential
o\ on on on omn p: pressure

w=dp/dt : diagnostic vertical velocity

n
o
D =D, —_! R,T, %('” p)dn P: physics forcing terms

= Non-hydrostatic, version available but currently not in operational use in ECMWF

How do we solve these equations?

< ECMWF :



Solving the equations: spectral transform Semi-implicit semi-Langrangian (SISL) method

~

FFT

Grid-point calculations
-semi-Lagrangian advection
-physical parametrizations
-products of terms

N

Inverse FFT

}

Fourier space

}
N

Spectral calculations
-horizontal gradients
-semi-implicit correction
-horizontal diffusion

I

Fourier space

|

Inverse LT

/'

FFT. Fast Fourier Transform, LT: Legendre Transform
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Vertical discretization

» Hybrid pressure based
vertical coordinate n(p)

= Finite Element
discretization based on
cubic spline elements

= Accurate vertical
integrals

= Accurate vertical
velocity leading to
accurate vertical
transport

(Reference: Untch and Hortal,
QJRMS 2004)



Spectral transform on spherical harmonics

¢(7¥,H)_ Z Zamn N (7\, ]J) M:Sine A, 0: lon, lat

=N n=|m|
/ Associated Legendre Polynomials

Spherical Ynm (7&, H) — Pm,n (M)elm7L

harmonics:

Analytical m 2 2
derivatives “infinite (1_ HZ) aY” =—Ng,, n+1Ym ng T (n _|_1)gm Yoo Emn = Q
order of accuracy”: ou ’ ! ’ 4n’ -1
m Spherical harmonics are the
% — 1mY VZY = n(n +1) eigenfunctions of the Laplace operator =>
O m-n mn R2 m’n elliptic equations can be solved efficiently
/ due to their simple discrete structure ©
Earth radius Important property given that at each

timestep the set of equations is reduced to
an elliptic equation.
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Improved accuracy, efficiency and scalability with
octahedral reduced cubic A-grid

] "-" .'
df Benefits of cubic octahedral grid
SN A0 \ compared with old linear grid:
5 A, Last latitude A A S + Improved effective resolution
w7 beforethepole 7 g « Improved mass conservation
T T T Y ; '  Improved efficiency and scalability
A Y S S AP | (higher gridpoint resolution, same
' ' spectral truncation)
Collignon projection on the sphere: Nlati=4 xi+ 16, i=1,...,N
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Reference: “A new grid for the IFS” ECMWF newsletter 146, Winter 2015-

2016, Malardel et al
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Improvement in mass conservation with octahedral grid

» Global mass conservation error is reduced by a factor of 30

— No need to use de-aliasing in pressure gradient term, less
numerical diffusion and improved accuracy
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Virtues of semi-implicit semi-Lagrangian
techniques
Semi-Lagrangian (SL) semi-implicit (SI) technique is ideal for
global NWP — stable, efficient and accurate integration of the
governing equations

O Unconditionally stable SL advection scheme having small
phase speed errors with little numerical dispersion

v" No CFL restriction in timestep!

U Unconditionally stable Sl time stepping for the integration of
fast changing forcing terms

v" No timestep restriction from the integration of “fast
forcing” terms such as gravity wave + acoustic terms
(present in non-hydrostatic models)



What is a semi-Lagrangian advection
scheme?

Semi-Lagrangian method is a numerical technique for solving
advection type PDEs which applies Lagrangian “thinking” on grid-
point models:

¢ Resembles a “backward” Lagrangian method: for every
discrete element (parcel) of the fluid a “backward” trajectory
IS computed

¢ This means that, at each time-step the final location of a
moving parcel is known (it is a grid-point) and the location
that its trajectory started (departure point) must be found

¢ As this computation is repeated at each timestep the grid is
not allowed to deform



History of semi-Lagrangian method in IFS

¢ The ECMWF model IFS (Integrated Forecast System) has been
operating since 1979

¢ Until the beginning of 1991 IFS is a spectral semi-implicit
Eulerian model on a full Gaussian grid at T106 horizontal
resolution and 19 levels

4 An increase to T231 L31 resolution was planned
¢ This upgrade required at least 12 x available CPU power
¢ Funding was available for 4 x CPU increase ...
¢ Upgrade was made possible only due to switching to:
¢ A semi-Lagrangian scheme on a reduced Gaussian grid

¢ The new model was 6 x faster!



The SL solution of the advection equation

Consider passive tracer linear advection equation:

D¢ _ 3¢ .\, o, _ _
bt~ ot v V=0 V=Wvw

—>

At time t parcel is at d and at t +At arrives at a grid-point ¢t V ¢t+At (1d-demo)

d a
(r, t+At) | |
Dg t+At t O
j FtDt:O:¢a+ =@, r:(x,y,z)I ‘ |
(rg.t) -
parcel trajectory in At
d: departure point (DP) a; arrival point

¢ Finding the “departure point” is an essential part of the technique:

¢ Solution at t+At is obtained by interpolating the available (defined
at time t) grid-point ¢-values at the DP

¢ Advectionterm V -V¢ is not explicitly computed — it is absorbed by the
Lagrangian derivative (advection problem is reduced to interpolation)



DP calculation in IFS and NWP models

In atmospheric flows wind field changes in space and time

¢ To find departure points, solve equation:

br =V(r,t) where r,V the position and wind vector

Dt
Second order mid-point rule was used in early versions of IFS:

[Dr=[V(r,nDt= i —rf = [V(r,t)dt ~ AtV (r,, ,t+At/2)
t t t

™~

Trajectory midpoint

Can obtain V at forward time t+At/2

3 1
explicitly using extrapolation such as: V(t+ati2)= EV (t)_EV (t=40)

¢ To tackle implicitness departure point is computed iteratively

¢ The scheme used currently in IFS is called SETTLS



SETTLS: Stable Extrapolation Two Time Level

Scheme
Taylor expansion to second order:

t 2 2
ra(t+At)=rd(t)+At-(Ej LA -(D rj
AV

Dt ), 2 \Dt°

AV: average value along SL trajectory

(zjt -, (0), (D:r] :(ﬂ) zva(t)—vd(t—At)
Dt /, Dt* ), Dt /,, At

Hence,

r,(t+At)~r, (t)+%.(va(t) +{2V (t) -V (t—At)}, )

Therefore DP can be computed by Iterative sequence:
i =r, —AtV (r,,t)

(O —p —§.(va () + {2V (t) -V (t— Ab))

r<k—1>) k=12,..K

Interpolate at rd(k_l)

Reference: Hortal QJRMS 2002, doi:10.1002/qj.200212858314



Interpolation in the IFS semi-Lagrangian scheme

After computing the departure points we need to:

« Interpolate the advected field to the DP to obtain: ¢ = ¢,
Interpolation must use (for stability) neighbouring to d.p. gridpoints

ECMWF model uses guasi-monotone quasi-cubic Lagrange interpolation

4

H(X_Xk)

K #i

4
Cubic Lagrange interpolation: ¢(x)=> w,(X)g, =~ W, (x) ==
i=1

H(Xi _Xk)

k #i

yA

X X% X Number of 1D cubic interpolations in 2D: 5 =>3D: 21
(64pt stencil)
‘ - - - -
X To save computations: use cubic interpolation only for
X—HX—f%—X nearest neighbour rows and linear interpolation
remaining rows. “quasi-cubic interpolation”:
X X _y 3*cubic+2*linear interpolations in 2D

7*cubic+10*linear in 3D (32 pt stencil)



Shape-preserving (locally monotonic) interpolation

e Creation of “artificial” maxima /minima

X: grid point values

X: interpolated value

» Shape-preserving (quasi-nHonotone) interpolation

- Quasi-monotone cubic interpolation: @gn = MaX(Pyin» MIN(Ppar Peus))

- Alternative: Spline or Hermite interpolation (not used in IFS operationally)



SL advection on the sphere

A semi-Lagrangian trajectory from D to A is an arc of a great circle

When computing the DP we need to account for the impact of the Earth curvature to the
wind vector that transports a parcel from D to A

Apply rotation operator from D to A to take into account Earth’s curvature in DP
iterations:

G - Rot (Vv _ _

o) =ra cos —M Rsing®, o™ = % ”VE\I/I() I,V :SETTLS approx to midpoint, R earth radius

IV «

@: angle DOA between position vectors r, and rp,

4 Temperton et al (QIRMS 2001)

u) (P a)(up _ (sin@, +sin @, )sin(4, - 4,)
Vo) \=q plv, ) v 1+cos ¢

7

= Y Rotation cosd, cos 6, +(1+sing,sin G, )cos(4, — Ap)
Matrix (Rot) P =

1+cosg




Do SL iterations always converge?

= SETTLS scheme for computing the departure point is iterative

= |ts convergence depends on Lipschitz number magnitude. Let rp , rpl
the converged solution and an estimate at iteration number v. Then:

rD_rD[V] < Ly_l rD_rD[l] ) V:2:3:-H:Vmax
{
or
o™ —rpl U < Lfjep N —wpl=A| v =23 v
oV _ _ :
L= At||§|\ Lipschitz (deformational Courant) number

@ L < 1 is a sufficient condition for convergence

@ L is an upper bound of the rate of convergence

What happens in IFS?

Reference: Diamantakis & Magnusson MWR2016 doi:10.1175/MWR-D-15-0432.1



Lipschitz numbers in IFS forecasts

(a) Wind speed (winter case) (b) Lipschitz number (winter case)

(1) 105 ad

(a), (b): 0OUTC 10 January 2014, t+48hrs fc at 500hPa. (c), (d): 00UTC 5 July
2014 t+96 hrs fc at 850hPa



DP convergence in typhoon Neoguri

* Model level near 850 hPa / 16km resolution
« Distance of two successive DP iterations scaled by gridlength
« Faster convergence when timestep reduced (not shown)

20140705 1436 hrs
jious d.p. iter scaled di

20140705 436 hrs
Current d.p. iter - previous d.p. iter scaled difference in vertical Current d.p. iter - previous d.p. iter scaled difference in vertical
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Revision of number of iterations in 41r2

Lack of adequate convergence became more noticeable at 9km res and that

prompted increase from 3 to 5 iterations
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Numerical noise in upper stratosphere

In “Sudden Stratospheric Warming” events noise is often seen in upper
stratosphere and model underpredicts the temperature there

The origin of the noise is the time extrapolation used in SETTLS

IFS 41r1: noise reduction & accuracy improvement with change in the
vertical part of 2"d order SETTLS i.e.

= switch to a non-extrapolating 15t order version when sudden changes
In vertical velocities occur in two consecutive timesteps (Reference: M.
Diamantakis, ECMWF newsletter No.141 Autumn 2014)
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noisy divergence 24hrs forecast: weak no noise + “correct

\ warming/v warming (cycle 41r1)
SETTLS (revised vertical scheme)




Major SSW January 2013

(a) Analysis

Thursday 03 Jarwcry 2013 00 UTC cernd 1160 VTThurseby 10 niiary 2013 00 UTC Shia Tamperiture Thorsday 03 darsry M43 00 UTC cerrd +188 VT Thursaty 10 ooy 2013 00 UTC S s Tevperative

" e m B 20 ) 0 B B an P - = Bs 2% o5 20 05 %% wan
FTT 11T HEENNES
S e e on v o~ e Py

B

e -~ ES) . - £

(b) t+7d CONTROL (c) t+7d NEW

Original (CONTROL) versus revised (NEW) SETTLS scheme



SSW case January 2013: Analysis animation
T analysis at 5hPa: 1 to 14 Jan 2013
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Combining SL with Sl scheme to solve the
governing equations

2"d order SISL discretization (Crank-Nicolson) applied to m prognostic eqn:

DX t+At At t t+At
DX xR, (K

d: interpolate to departure point Wind comp, temperature etc
Split F and linearize fast nonlinear terms to simplify solution:
Let L(X)=A-X, N=F-L(X)=F =N+L(X)

With previous splitting the two-time-level, 2" order IFS discretization
becomes (Temperton et al, QJRMS 2001) :

nonlinear terms at future time

/\

t+At At t t+At At f t+At/2 t+At/2 \
X, Xt =?(|_d +L, )+? (NGNS
N ™42 changes slowly and can be computed “explicitly” by SETTLS extrapolation

N trat/2 _ %(Nt 4 {2Nt — NA }d ) all right-hand side terms are given



The Helmholtz equation

We have m prognostic equations that are expensive to solve

/Instead of solving the whole coupled system, with analytical
manipulations we can eliminate its variables in terms of horizontal wind

divergence deriving a single elliptic (Helmholtz) equation. Once this is
solved all prognostic variables can be updated through “back-

substitution”. |
\ 4

* In the IFS the resulting Helmholtz equation has constant coefficients
and is solved in spectral space very accurately and efficiently using
spherical Harmonics properties

* Having a cheap solver + being able to use large At (due to
unconditional stability and good dispersion properties of SISL)
explains why IFS is computationally a very efficient model.

ECMWF &N
-y
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Solving Helmholtz equation

Eliminate variables we derive a Helmholtz equation wrt to D:

(L-a"at (e + RV} D = D' =tV (T + R T P)

[in the presented discretization | have assumed a=1/2 (Crank-Nicolson), however, off-centring i.e.
using a-value slightly >0.5 (0.55) is often used by some models to control unwanted oscillations]

Define: [ =a’At?lyz+R,T,v), % = D~ aAtV2(3T +R,T,P")
(L — 1; VhZ)Dt+At =R  Matrix " couples all vertical levels

Decouple equations by diagonalizing I' and solving in spectral space

~ t+At

EZQ_léQ, 6t+At:QDt+At, Sﬁ:QER:(Iz_éVhZ)D :9'?{’ 1=\:(/1i)

ABEN B (B G () w25\ N+D) s
(1-4Vi) D™ =R, D=(D),  ®=(%) ", v*(D), :_r—o(D)
* The above equation is further simplified to the form [1+/’L n(n+1)J5t_w _ G
which can be easily solved exactly for each i Lot ©oe
« Once divergence D at new time level is found the remaining fields can be

computed through back-substitution

n

(o]

Reference: Ritchie et al, MWR 1995 Vol 123 p. 489



NH-IFS: Sl time stepping and stability

» The global non-hydrostatic IFS is more sensitive to explicit
(using extrapolation) integration of the non-linear terms:
Instabilities occur

» An iterative approach can be used to avoid extrapolation and
Improve stability allowing long timesteps as in the hydrostatic:

¢ ICI: lterative Centred Implicit

¢ It works like predictor-corrector but dynamics become
twice as expensive:

=» First predict state of prognostic variables at t+At using
a 1st order scheme that doesn’t require extrapolation

=» Recompute solution using the “predicted” values for
those right hand side semi-implicit terms that must be
computed at t+At



Limitations of the SISL approach

¢ Not formally conserving
¢ In long integrations mass drifts and needs to be “fixed”

¢ In IFS mass fixers are used for individual tracers and pressure
(total mass of air) in long simulations

¢ Scalability issues as resolution increases:

¢ ECMWEF spectral IFS: high global communication cost of
spectral transforms + scalability/memory scalability of SL (very
large halos to be filled, see GMD 11, 3409-3426, 2018)

¢ Regular lat/lon gridpoint models: too much resolution near the
poles (slow convergence for implicit solvers + large
communication MPI overhead )



Improved tracer Mass fixer in 43r3
(carbon tracers)

A modified version of Bermejo & Conde mass fixer implemented in
IFS is applied to CO2, CH4 in atmospheric composition forecasts

oM
~~ Aij
.k honzontal, vertical index y Aj Wik
Correction obtained using a Lagrange Jj=1 k=1 &
multiplier approach which ensures that E ~~ =
the global norm of the difference from weighted total mass integral

the original field is minimum

where M(¢,): total mass of ¢,, ¢*: interpolated field to the DP (cubic
Lagrange), p*: pressure field after advection and wj, such that mass fixer
active mostly in areas where interpolation error is larger

Wjk = max {O,Sgn(éM)sg” (Qka - J'Lk) | ik qb}k‘ﬁ mjk]

oL: linearly interpolated field to the DP, 5 = 2 (species dependent
parameter), mjy ~ gridbox mass

Reference: Diamantakis & Agusti-Panareda ECMWF Tech Memo 819, 2017



“Proportional” versus Bermejo and Conde
mass fixer

{a] TL1274,L137 XCH4  Proportional - Nofixer (b} TL255,L60 XCH4 Proportional - Nofixer
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Difference in mean XCH4 [ppb] between: (a,b) the simulations using the
proportional mass fixer and the simulation without mass fixer at high and low

resolution respectively; and likewise (c,d) the simulation with Bermejo and Conde
(B&C) and the simulation without mass fixer. Period: 7/03/16-10/04/16



Validation against CO2 observations
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Modelling atmospheric CH4 in the ECMWEF Integrated Forecasting system

CH, synoptic variability: 25 to 29t of March 2010
Average total column CH, [ppb]

TRANSPORT 20100325 00 UTC
High resolution %gi;g

IFS (16km, L137) s
1806.6

1803.0

| 175

SURFACE FLUXES 1792:2

- Anthropogenic : EDGARV4.2 2008 1788.6
* Near-real-time GFAS biomass 1785.0

burning
» Climatologies for other fluxes

CHEMISTRY

Monthly mean
loss rate
climatology

(Lopernicus < ECMWF




Code efficiency improvement:
A single precision IFS

European cold outbreak 5-day 9km forecast (T) valid 8/01/17

A single precision version of IFS has been developed Single precision Double precision Afiiilizsis

Efficiency gain for uncoupled (atmos) model 40%

Neutral in terms of forecast skill for a range of
different resolutions compared with double precision

VerSion g — Tcé>1279 singlelprecision
= — TL1279 double precision [0.02
Total MaSS E — Tcol279 double precision
. o _ changein &
Some deterioration in terms of mass conservation a 10-day g 100t
(mostly due to single precision spectral transform - £
fc with SP, ¢
package) but at acceptable levels for NWP forecasts: DP (new Jooo
use of mass (pressure) fixer eliminates geopotential . E
bi cubicand 2
lases _ £
old linear 5 1-0.01
grid) 2
g 0 50 100 150 200 250007
Reference: Vana et al, MWR 2017 doi: 10.1175/MWR-D-16-0228.1 oo
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Summary

 IFS relies on an efficient and accurate dynamical core that we constantly
improve

» 43r3 compared with 40rl (earlier version that OpenlFS was based) has some
noticeable differences:

A new grid that improves further the accuracy and efficiency of the model
Improvements in the semi-Lagrangian scheme
Improvements in air mass conservation and tracer mass conservation

Option to run faster in single precision at the same level of accuracy as double
precision

While we continue improving the spectral dynamical core we also develop a new
compact stencil Finite Volume core that scales well at massively parallel
architectures and conserves mass.

Thank you for your attention!
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