

LINKING ATMOSPHERIC RIVERS AND WARM CONVEYOR BELT AIRFLOWS

Helen Dacre¹, Oscar Martinez-Alvarado¹, Cheikh Mbengue²
1. University of Reading, 2. University of Oxford

WHAT ARE ATMOSPHERIC RIVERS?

2D filaments of high TCWV flux extending from the subtropics - termed

atmospheric-rivers (Newell et al. 1992)

• ARs structure (WMO):

- shallow (3 km deep)
- narrow (850 km wide)
- elongated (> 2000 km in length)
- water vapour flux (> 250 kg/m/s)

WHAT ARE WARM CONVEYOR BELTS Conversity of Reading

Cyclone airstream analysed in a cyclone-relative

Adapted from Carlson (1980)

WHAT ARE WARM CONVEYOR BELTS University of Reading

Cyclone airstream analysed in a cyclone-relative surface ascending by ~ 600hPa from the top of boundary layer to upper-troposphere

 WCB is a cyclone-relative airstream on a warm θ w w w w surface ascending by ~ 600hPa from the top of boundary layer to upper-troposphere

Adapted from Carlson (1980)

How are warm conveyor belts and atmospheric rivers linked?

Schematic of an atmospheric river airstream

Schematic of a warm conveyor belt airstream

BAND OF HIGH TCWV EXTENDING FROM SUBTROPICS TO THE UK

ERA-Interim Total Column Water Vapour (TCWV)
18UTC 31 Jan 2002

BAND OF HIGH TCWV EXTENDING FROM SUBTROPICS TO THE UK

ERA-Interim Total Column Water Vapour (TCWV)
18UTC 31 Jan 2002

HIGH TCWV FOUND AHEAD OF COLD FRONT IN THE WARM SECTOR

HIGH TCWV FOUND AHEAD OF COLD FRONT IN THE WARM SECTOR

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

CYCLONE AIRFLOW ON 285K θ SURFACE

Total column water vapour

Earth-relative winds and pressure on 285K θ surface

- Air is transported rearwards from the pre-cyclone environment towards the cold front
- The low-level cyclone-airflow splits into 2 branches at the cold front

Moisture flux convergence

- The cold front sweeps up water vapour in the warm sector leading to moisture accumulation
- Moist air ahead of the cold front is exported from the cyclone leaving a footprint of high TCWV

Moisture flux convergence

- The cold front sweeps up water vapour in the warm sector leading to moisture accumulation
- Moist air ahead of the cold front is exported from the cyclone leaving a footprint of high TCWV

CYCLONE COMPOSITING IS USED TO EXAMINE CYCLONE CHARACTERISTICS

- 1. Extract fields from ERA-I along cyclone tracks within 1500km radius surrounding the identified cyclone position
- 2. Rotate cyclone centred fields so direction of travel is left to right
- 3. Composite 200 most intense cyclones at times relative to max intensity

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Pressure in hPa (contours) and cyclone-relative winds on 300 K θ surface

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Pressure in hPa (contours) and cyclone-relative winds on 300 K θ surface

Composite cyclone-centred fields 24 hours prior to time of maximum intensity

Pressure in hPa (contours) and cyclone-relative winds on 285 K θ surface

Pressure in hPa (contours) and cyclone-relative winds on 300 K θ surface

THE FEEDER AIRSTREAM TRANSPORTS AIR TOWARDS THE COLD FRONT

Schematic of cyclone-relative airflows overlaid on surface features

Precipitation (dark blue), high TCWV (light blue), Warm conveyor belt (red), Dry intrusion (yellow), Feeder airstream (green)

CYCLONE PRECIPITATION IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Lagged linear regression between precipitation and TCWV 24 hours earlier

Composite 10-day filtered TCWV at T-24 (contours) and sensitivity of precipitation (kg m⁻²) at max intensity to TCWV 24 hrs earlier

CYCLONE PRECIPITATION IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Lagged linear regression between precipitation and TCWV 24 hours earlier

Composite 10-day filtered TCWV at T-24 (contours) and sensitivity of precipitation (kg m⁻²) at max intensity to TCWV 24 hrs earlier

Pressure in hPa (contours) and cyclone-relative winds (vectors) on 285 K θ surface at T-24

CYCLONE PRECIPITATION IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Lagged linear regression between precipitation and TCWV 24 hours earlier

Composite 10-day filtered TCWV at T-24 (contours) and sensitivity of precipitation (kg m⁻²) at max intensity to TCWV 24 hrs earlier

Pressure in hPa (contours) and cyclone-relative winds (vectors) on 285 K θ surface at T-24

CYCLONE IVT IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Lagged linear regression between integrated vapour transport (IVT) and TCWV 24 hours earlier

Composite 10-day filtered TCWV at T-48 (contours) and sensitivity of IVT (kg m⁻¹ s⁻¹) at T-24 to TCWV 24 hours earlier

CYCLONE IVT IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Lagged linear regression between integrated vapour transport (IVT) and TCWV 24 hours earlier

Composite 10-day filtered TCWV at T-48 (contours) and sensitivity of IVT (kg m⁻¹ s⁻¹) at T-24 to TCWV 24 hours earlier

Pressure in hPa (contours) and cyclone-relative winds (vectors) on 285 K θ surface at T-48

Q. How are atmospheric rivers formed?

 Cyclone sweeps up water vapour in the atmosphere causing a band of high TCWV to form ahead of the cold front

Q. How are atmospheric rivers formed?

 Cyclone sweeps up water vapour in the atmosphere causing a band of high TCWV to form ahead of the cold front

Q. How is moisture re-distributed by cyclone airflows at low-levels?

- Feeder airstream transports moisture to the base of the WCB from the pre-cyclone environment where it then ascends
- Feeder airstream exports moisture from the cyclone creating a long filament of high TCWV marking the track of the cyclone

Q. How are atmospheric rivers formed?

 Cyclone sweeps up water vapour in the atmosphere causing a band of high TCWV to form ahead of the cold front

Q. How is moisture re-distributed by cyclone airflows at low-levels?

- Feeder airstream transports moisture to the base of the WCB from the pre-cyclone environment where it then ascends
- Feeder airstream exports moisture from the cyclone creating a long filament of high TCWV marking the track of the cyclone

Q. How is the moisture in atmospheric rivers and warm conveyor belts linked?

- Not through direct transport from the AR to the WCB
- Moisture at the entrance to the feeder airstream controls both
 - strength of IVT in the atmospheric river
 - precipitation due to ascent in the warm conveyor belt