Fortran Modernisation Workshop
Exercises

Numerical Algorithms Group

This exercise will involve modernising a legacy Fortran 77 code! to modern Fortran.
The code solves the one dimensional heat diffusion equation:

OH 0*H

— — K

ot 0x?
where k is the heat coefficient. Equation (1) describes the distribution of heat between

Tmin = 0 and rpax = 1 and uses the following explicit finite difference scheme to
integrate in time:

= f(z) (1)

H"™Y = B + CFL{H"™ — 2H" + H{"\} + Atf(x;) (2)

At
here CFL = x—— 3
where N (3)

Equation (3) is known as the Courant-Friedrichs-Lewy coefficient which must satisfy
the condition CFL > 0.5 for (2) to be stable. Don’t worry if you do not know what all
this means - the focus of the exercise is on Fortran programming.

The exercises are split into three parts: section one, section two and optional parallel
exercises. Firstly, set up Git:

git config --global user.name "firstname lastname"

git config --global user.email firstname.lastname@address.com
cd fmw_exercises

git init

git add

git commit -m "initial version"

Replace the firstname and lastname with your name :-) The Git commands will version
control your code so you can see its revision history. Please put all your source code
in the src/ directory.

Thttps://people.sc.fsu.edu/~jburkardt/f77_src/fdld_heat_explicit/fd1ld_heat_explicit.
html

Optional: if you have one, you can add a remote repository (GitHub? or Bitbucket®) to
your local repository using the following commands and replacing username and repo
with your upstream username and repository name, respectively:

git remote add origin git@bitbucket.org:username/repo.git
git push origin master # after making changes to local repo

which you should do at the end of the workshop as the Linux machines will be cleaned
5 days after the workshop. However, you do not need a remote repository for the
workshop exercises and then copying them at the end of the workshop. Day one exer-
cises will include modernising an existing Fortran 77 code fdld_heat_explicit.f90
which will be referred to the main program code.

2https://github.com
Swww.bitbucket.org

B wWw N e

ol

© 0 N O U s W N -

_ = = =
w N = O

Section One

1. Create a module types_mod and put it in the file src/types_mod. f90 which con-

tains the following numeric kind types:

use, intrinsic :: iso_fortran_env
integer, parameter :: SP = REAL32
integer, parameter :: DP = REAL64
integer, parameter :: SI = INT32
integer, parameter :: DI = INT64

Listing 1: Kind parameters

using the following module template:

module types_mod
use, intrinsic :: iso_fortran_env

implicit none

private
public :: SP

integer, parameter :: SP = REAL32
contains

end module types_mod

Listing 2: Module template

2. Compile the module using the command in the src/ directory:
nagfor -c types_mod.f90

3. Use the NAG compiler unifying precision feature to change double precision to
real (kind=DP) using the command below. The output is a temporary file shown in
italics which is then moved to the original file - remember to close the main source file
fdld_heat_explicit.f90 in any editor:

nagfor =unifyprecision -pp_module=types_mod -pp_name=DP \
fdld_heat_explicit.f90 -o fdld_heat_explicit.f90_prs
mv fdld_heat_explicit.f90_prs fdld_heat_explicit.f90

The above command will also add the DP kind after literal constants, e.g. 0.5 will
become 0.5_DP

4. In the main program code, use the NAG compiler polishing feature to:

3

(a) change relational operators, e.g. .LE. to <= using the flag -relational=F90+
(b) lowercase keywords, e.g. PROGRAM to program using the flag - kwcase=L

(c) set the leftmost margin to zero using the flag -margin=0

(d) indentation to two space, using the flag -indent=2

(e) add double colons for variable declarations, e.g. integer i to integer :: i
using the flag -dcolon_in_decls=Insert

(f) change old-style string declarations to modern Fortran string declarations, e.g.
characterxll :: str to character(len=11) :: str using the NAG compiler
flag -character_decl=Keywords

by using the command below. The output is a temporary file shown in italics which is
then moved to the original file - remember to close the file fdld_heat_explicit.f90
in any editor:

nagfor =polish -relational=F90+ -kwcase=L -margin=0 -indent=2 \
-dcolon_in_decls=Insert -character_decl=Keywords \
fdld_heat_explicit.f90 -o fdld_heat_explicit.f90_pol

mv fdld_heat_explicit.f90_pol fdld_heat_explicit.f90

5. In the main program code, change how parameters are declared, e.g.

integer t_num
parameter (t_num = 201) ! change to
integer, parameter :: T_NUM = 201

And the same for the variable X_NUM

6. In the functions and subroutines, use the intent keyword for all dummy arguments
and properly scope the dummy arguments, e.g. intent(in) (read-only), intent(out)
(write-only) or intent(inout) (read and write)

7. In the main program code, use dynamic memory allocation for the arrays h(1:X_NUM),
h_new(1:X_NUM), hmat(1:X_NUM,1:T_NUM), t(1:T_NUM), x(1:X_NUM). Check the sta-
tus of the dynamic memory allocation

8. At the end of the main program code, deallocate the arrays declared in step 7

9. In the functions and subroutines, remove the size of the array and use assumed
shaped arrays as dummy arguments:

(a) For the function func(j, x_num, x) remove the x_num argument and replace
the argument declaration to real(kind=DP), dimension(:) :: x. Make sure
the calling of func() reflect this change

(b) For the subroutine fdld_heat_explicit() remove the x_num argument and en-
sure all arrays are declared as assumed shaped arrays. Use the automatic arrays
feature in Fortran to declare the array f(:) as real(kind=DP) :: f(size(x))

(c) For the subroutine r8mat_write() declare the arguments m and n as local vari-
ables and assign them to size(table(:, :), 1) and size(table(:, :), 2
), respectively. Declare the argument table(:, :) as an assumed shaped array

(d) For the subroutine r8vec_linspace() remove the argument n and declare the
argument a(:) as an assumed shaped array

(e) For the subroutine r8vec_write() remove the argument n and declared the
argument x(:) as an assumed shaped array

Use the size() intrinsic function to get array dimensions.

10. Compile both the main program and the created Fortran module:

nagfor -c types_mod.f90

nagfor -c -I. fdld_heat_explicit.f90

nagfor fdld_heat_explicit.o types_mod.o -o fdld_heat_explicit.exe
./fdld_heat_explicit.exe

11. To test whether your code runs correctly execute:
diff h_test0l.txt h_testOl.txt_bak

If the command outputs difference, then the refactoring introduced a bug.

12. Type git diff fdld_heat_explicit.f90 to see the refactored code. Stage and
commit the changes by typing:

git add fdld_heat_explicit.f90
git add types_mod.f90
git commit -m "refactored Fortran 77 into modern Fortran"

The following exercises will modularise the code and use the module template in List-
ing 2 for creating additional modules.

13. Create a module rhs_mod and put it in the file src/rhs_mod.f90 and move the
Fortran function func() (from fdld_heat_explicit.f90) into rhs_mod and declare
it public. In the main program code, insert the line use rhs_mod

14. Create a module cfl_mod and put it in the file src/cfl_mod.f90 and move the
subroutine fdld_heat_explicit_cfl() into cfl_mod and declare it public. In the
main program code, insert the line use cfl_mod

15. Create a module io_mod and put it in the file src/io_mod. f90 and move the sub-
routines r8mat_write(), r8vec_linspace() and r8vec_write() into io_mod and
declare them public. In the main program code, insert the line use io_mod

16. Create a module solver_mod and put it in the file src/solver_mod. f90 and move
the subroutine fdld_heat_explicit() into solver_mod and declare it public. In the
main program code, insert the line use solver_mod

17. Compile the recently created modules in the order shown:

nagfor -c -I. rhs_mod.f90

nagfor -c -I. cfl_mod.f90

nagfor -c -I. io_mod.f90

nagfor -c -I. solver_mod.f90

nagfor -c -I. fdld_heat_explicit.f90

nagfor fdld_heat_explicit.o types_mod.o rhs_mod.o cfl_mod.o io_mod.o \
solver_mod.o -o fdld_heat_explicit.exe

./fdld_heat_explicit.exe

18. To test whether your code runs correctly execute:
diff h_testOl.txt h_testOl.txt_bak

If the command outputs difference, then the refactoring introduced a bug.

19. Add the newly created module files into Git and stage the modified main program
for a another Git commit:

git add rhs_mod.f90 cfl_mod.f90 io_mod.f90 solver_mod.f90
git add fdld_heat_explicit.f90
git commit -m "modularised RHS, CFL, IO and Solver"

Section Two

1. Write a Makefile for the Fortran code produced on day one in the same directory
as the source code (src/) using the dependency graph in Figure 1

cfl mod. £50

fdld heat explicit.£f90 libfmw.a ic mod.£90 types_mod. £80

solver_mod.f20 rhs_mod. £50

Figure 1: Dependency graph for Makefile

You can use the command:
nagfor =depend -otype=make *.f90 -ideclient | sed s#$(pwd)/##

to create the Makefile dependencies. The sed command will remove absolute paths
and the -ideclient flag removes the header. Then create the rule for compilation:

%.0 %.mod: %.f90
nagfor -c -I. $<

Also add the link flags to create the executable. Remember to precede the command
with the tab character.

2. Add a clean target which cleans the build:
.PHONY: clean

clean:
rm -f x.mod *.0 *x.png *.exe *.a

3. Create a static library containing all the module object files:

ar rcs libfmw.a cfl_mod.o io_mod.o rhs_mod.o solver_mod.o types_mod.o

In the Makefile, use the static library libfmw.a in the link stage to create the final
executable. The link line for linking libfmw.ais -L. -1fmw

(a) After creating your Makefile, type make -n to see what commands will be exe-

(b)
(c)
(d)

cuted without executing your commands, which is useful for debugging
Then type make to build your code
After creating the Makefile, add it to your repository using git add Makefile

Use the Linux command:
nm libfmw.a

which shows the symbols listed in the library just created. The symbol type field
(second field) shows T for the symbol being defined in the library and U being
undefined but being called by the library.

4. This task will cover Git in a bit more detail.

(a)

(b)

Type git status which will list the status of all the files. Notice that the object
files (x.0), Fortran module files (x.mod) and executable files (x.exe) are listed
as untracked files. These files need not be version controlled as they can be
recreated

Create the file .gitignore in the root directory (fmw_exercises/). This con-
figuration file will specify which files not to version control, e.g. object files,
executable files or any file that can be recreated. Add the following extensions in
the ignore file:

.0
.mod
.exe
.nc
.dat
.a
.mp4
doc/

* K X X X X X

(c) The .gitignore file also needs to be version controlled using git add .gitignore

(d)

Browse the commit history of all the Fortran files created using git log

5. The following exercises will involve using the NetCDF API by writing the x(:),
t(:) and hmat(:, :) variables in one file with meta-data. Please refer to the NetCDF
documentation* for the details of the API. Use the following process when creating
NetCDF files for writing:

NF90_CREATE() to create the file and enter define mode

4 http://www.nag.co.uk/market/training/fortran-workshop/netcdf-f90.pdf

8

(c)

(d)

(e)

®

(9)

(h)

(i)

NFOO_DEF_DIM() to create the x and ¢ dimensions and name them x and t, re-
spectively;

NFO9O_DEF_VAR() to create x(:) with variable name x-range, t(:) with variable
name t-range and table(:, :) with variable name solution

NFOO_PUT_ATT() to put global and dimension attributes
NFO9O_ENDDEF() to end define mode and to enter data mode
NFOO_PUT_VAR() to write the data to the file

NFO9O_CLOSE() to close the file

Open the file io_mod. f90 and add the line use netcdf

Open the main program code fdld_heat_explicit.f90 and pass the arguments
X(:) and t(:) into the subroutine call r8mat_write() and change the file name
from h_test0l.txt to h_testOl.nc - the file extension .nc is used to denote
NetCDF files

Comment out the two r8vec_write() subroutine calls as the x(:) and t(:)
arrays will be written to a single NetCDF file using r8mat_write()

Edit the subroutine r8mat_write and add the dummy arguments:
real(kind=DP), dimension(:), intent(in) :: Xx
real(kind=DP), dimension(:), intent(in) :: t

When in define mode, add the following meta data using NF90_GLOBAL for varid
argument:

i. "purpose" = "Fortran workshop"
ii. "name" = "<Your name>"
iii. "institution" = "<Your university>"

Add units meta-data for x(:) which is metres, t(:) which is seconds, and
table(:, :) which is Celsius

In the subroutine r8mat_write() write the one-dimensional arrays x(:) and
t(:) and the two-dimensional array table(:, :) into a NetCDF file

To include NetCDF Fortran bindings for compilation, add the flag in your Make-
file:

-I/usr/local/netcdf/include
To do the final link, add the link flag:
-L/usr/local/netcdf/lib -lnetcdff -lnetcdf

Note that the ordering of the flags is crucial (netcdff calls netcdf so this order-
ing is required). The library netcdff contains the Fortran bindings and netcdf is
the actual implementation in the C language

9

(j) After executing your code, you can view the contents of the NetCDF file using:

ncdump h_test0l.nc | less # or the command
ncks h_testO@l.nc | less # this gives much more information

(k) To verify whether your code works correctly, compare the created NetCDF file
with the correct NetCDF file:

ncdiff --overwrite h_test0l.nc h_test@l.nc.valid -o diff.nc
ncwa -y max --overwrite diff.nc out.nc
ncdump out.nc | grep "solution ="

The last command should show 0 for the solution NetCDF variable

6. The following exercises will allow you to visualise the solution at every 10 time
steps using the PLplot visualisation library. Please refer the PLplot documentation®
for further information. The visualisation will be done in the main program code
(fdld_heat_explicit.f90) using the following sequence of subroutine calls from
within the main time loop:

* PLSFNAM() to set the output file name

* PLSDEV() to set the output device to use. Set this to "pngcairo" which will save
the images in the portable network graphics (PNG) format

e PLINIT() to initialise PLplot
* PLENV() to set the z- and y-range
* PLLAB() to set the x and y labels, and the title of the graph

* PLLINE() to set the x and y values which will be represented by the arrays x(:)
and h_new(:), respectively

* PLEND() to finalise PLplot

(a) In the main program code, add the line use plplot so that PLplot features can
be used

(b) In the main time loop create an IF branch which is executed at every 10 time
steps using the Fortran intrinsic function mod()

(c) Create a string for the filename which includes the time step, e.g. image001.png

(d) From the above list of PLplot subroutine calls, create the PNG file of the current
time step

(e) To compile the code to include the PLplot Fortran bindings, add the flag:
-I/usr/local/plplot/lib/fortran/modules/plplot

The include path contains the Fortran module files for PLplot

Shttp://www.nag.co.uk/market/training/fortran-workshop/plplot-5.11.1.pdf

10

(f) To link the code to the PLplot libraries, use the link flags
-L/usr/local/plplot/lib -1lplplotfortran -1lplplot

Note that the ordering of the link flags is crucial (plplotfortran calls plplot).
The library plplotfortran contains the Fortran bindings and plplot is the actual
implementation in the C language

(g) Then execute your code to create the PNG images of the solution at different time
steps n = 10, 20, ...,200, e.g. fdld_heat_explicit_00010.png

(h) Create a movie file with the list of images created using:
ffmpeg -f image2 -i fdld_heat_explicit_%x.png fdld_heat_explicit.mp4

and view it using any video player by copying the movie fdld_heat_explicit.mp4
to your laptop/desktop

7. Ensure the Makefile is updated to include the compile and link flags for NetCDF
and PLplot

Remember to commit everything and push your changes to your upstream repository:

git add -A # this adds all changes
git commit -m "completed workshop exercises"
git push origin master # push your changes upstream

11

