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4D-Var

Land

Ocean

Sea Ice

Waves

Earth system approach

Atmosphere

3D-Var

3D-Var

OI

OI/SEKF

- - Consistency of the infrastructure and coupling approaches across the different components

- - Modularity to account for the different components in coupled assimilation

3

Integrated Forecasting System (IFS)
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4
Coupled assimilation terminology

Penny et al., 2017 Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, 
Challenges and Recommendations. World Meteorol. Org. (WMO), WWRP 2017-3

• In the next assimilation windows -> weakly coupled data assimilation (WCDA) 
- i.e.: independent DA for all components and interaction through model coupling

• During the data assimilation window  strongly coupled data assimilation 
- Multiple systems approach (e.g. outer loop coupling): QuasiSCDA
- Single Integrated system: SCDA

Coupled assimilation: observations increments in one component impact the other components

Weakly Coupled Data Assimilation Strongly coupled Data Assimilation

QuasiSCDANo coupling
WCDA

+-
Full coupling

Coupled assimilation continuum
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Current operational NWP system at ECMWF

Weakly coupled land-atmosphere-wave and sea ice assimilation

4D-Var

Sea ice

3D-Var

5

Ocean and sea ice DA  H Zuo

Coupled DA -> P. Browne 

Reanalysis -> D. Schepers



© ECMWFEUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Coupled land-atmosphere data assimilation

- Vertical correlations dominate land surface processes. Each grid point is analysed 

independently. Land data assimilation is a 2D problem, whereas atmospheric DA is a 4D 

problem   Separate Land & atmospheric DA systems.

- Flexibility to run land analysis without the expensive 4D-Var component
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Weakly land-atmosphere CDA 

Used for reanalysis (ERA5) & NWP
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Introduction:  Land Surface Data Assimilation (LDAS)

Snow depth

- Methods: Cressman (DWD, ECMWF ERA-I), 2D Optimal Interpolation (OI) (ECMWF operational and 

ERA5, Env. Canada Clim. Ch.) 

- Conventional Observations:  in situ snow depth

- Satellite data: NOAA/NESDIS IMS Snow Cover Extent (ECMWF), H-SAF snow cover (UKMO in dvpt) 

Soil Moisture

- Methods: 

-1D Optimal Interpolation (Météo-France, Env. Canada CC, ALADIN and HIRLAM) 

- 1D-EnKF (Env. Canada CC)

- Simplified Extended Kalman Filter (EKF) (DWD, ECMWF, UKMO) 

- Conventional observations: Analysed SYNOP 2m air relative humidity and temperature, from 2D OI 

screen level parameters analysis

- Satellite data : ASCAT soil moisture (UKMO, ECMWF), SMOS (ECMWF, 2019)

Soil Temperature and Snow temperature

- 1D OI for the first layer of soil and snow temperature (ECMWF, Météo-France)
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Snow in the ECMWF IFS for NWP

Snow Model: Component of H-TESSEL (Dutra et al., JHM 2010, Balsamo et al JHM 2009)

Single layer snowpack

- Snow water equivalent SWE (m)

- Snow Density ρ
s

Observations: de Rosnay et al ECMWF Newsletter 2015

- Conventional snow depth data: SYNOP and National networks

- Snow cover extent: NOAA NESDIS/IMS daily product (4km)

Data Assimilation:  de Rosnay et al SG 2014

- Optimal Interpolation (OI) is used to 

optimally combine  the model first guess,

in situ snow depth and IMS snow cover

- The result of the data assimilation is the 

analysis of SWE and snow density

 used to initialize NWP.

Prognostic

variables
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NOAA/NESDIS 

IMS Snow extent data

Interactive Multisensor Snow and Ice Mapping System (IMS)

- Time sequenced imagery from geostationary satellites

- AVHRR,

- VIIRS, 

- SSM/I, etc….

- Station data 

Northern Hemisphere product

- Daily

- Polar stereographic projection

Information content: Snow/Snow free

Data used at ECMWF: 
- 4 km product  (NWP, ERA5)

Latency:

Available daily at 23 UTC. Assimilated in the subsequent analysis at 00UTC

Snow cover observations

http://nsidc.org/data/g02156.html
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15 Dec 2017

Snow

Depth (cm)

Snow SYNOP and National Network data in Europe
Snow Observations

5               10                20                   30                 50            

In general, good coverage in Europe, but …

- Zero snow depth reporting is an issue with some 

countries providing observations only when snow 

depth > zero (e.g. Ukraine)

- Still area with relatively few snow depth reports
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SYNOP TAC + SYNOP BUFR + national BUFR data

In situ snow depth observations
GTS Snow depth availability

Status on  10-15 December 2013
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SYNOP TAC + SYNOP BUFR + national BUFR data

In situ snow depth observations
GTS Snow depth availability

Status on  10-15 December 2017

See more on snow DA and observations in de Rosnay et al, ECMWF Newsletter article, issue 143, 2015
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Snow depth Optimal Interpolation

1. Observed first guess departure fi are computed from the interpolated background at each 

observation location i. 

2. Analysis increments Sk
a at each model grid point k are calculated from: 

a

i i

1

S w
N

k

i

f


   

3. The optimum weights wi are given for each grid point k by: (P + R) w = p

p : background error vector between model grid point k and observation n (dimension of N 

observations) p(i) =  σ2
b . μ(i,k)

P : correlation coefficient matrix of background field error between all pairs of observations 

(N × N observations); P(i1,i2) = 2
b ×(i1,i2) with the correlation coefficients (i1,i2).

R : covariance matrix of the observation error (N × N observations):

R = 2
o × I 

with and b = 3cm the standard deviation of background errors, o the standard deviation of  

observation errors (4cm in situ, 8cm IMS) 

Based on Brasnett, j appl. Meteo. 1999
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Snow depth Optimal Interpolation

Lz; vertical length scale: 800m, Lx: horizontal length scale: 55km

ri1,i2 and Zi1,i2 the horizontal and vertical distances between points i1 and i2

Quality Control: reject observation if ΔSn> Tol (σb
2 + σo

2 )1/2   with Tol = 5

Observation rejected if first guess departure larger than 25 cm for insitu (and 42cm for IMS)

Redundancy rejection: use observation reports closest to analysis time 

And use a maximum of 50 observations per grid point

Correlation coefficients (i1,i2) (structure function):          

1 2 1 2 1 2

2

1 2

r r z
μ ,i (1 )exp .exp

Lx Lx Lz

i i i i i i
i

      
                    
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Cressman still used in ERA-Interim and at DWD

In both OI and Cressman, snow depth increments 

computed as :

Cressman: weights are function of horizontal and vertical 

distances. Do not account for observations and 

background errors. 

OI: The correlation coefficients of P and p follow a second-

order autoregressive horizontal structure and a Gaussian 

for the vertical elevation differences.  

OI has longer tails than Cressman and considers more 

observations. Model/observation information optimally 

weighted using error statistics.

OI vs Cressman

a
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Structure function

(Cressman, MWR 1959)
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OI Brasnett 1999 +4km NESDIS

Snow data assimilation OI vs Cressman

IFS oper before 2010

and ERA-Interim

Cressman Interpolation

IFS oper from 2010

and ERA5

Optimal Interpolation 
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Revised Nov 2013 ( IFS 40 r1 and 41r1)

Assimilation of IMS snow cover
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Snow analysis: Forecast impact
Impact on snow October 2012 to April 2013 (251 independent in situ observations)

☺ ☺

☺

Revised IMS snow 

cover data 

assimilation (2013)
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 Consistent improvement of snow 
and atmospheric forecasts

Impact on atmospheric forecasts 

October 2012 to April 2013 (RMSE new-old)

Snow analysis: Forecast impact

de Rosnay et al., ECMWF

Newsletter 143, Spring 2015

☺ ☺

☺

☺

☺

Revised IMS snow 

cover data 

assimilation (2013)

Impact on snow October 2012 to April 2013 (251 independent in situ observations)
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Observing System Experiments

Expts SYNOP National Data IMS snow cover

0- OL (no snow data assimilation)

1- Snow DA: SYNOP+IMS  ✓ ✓

2- Snow DA: SYNOP+Nat (all in situ) ✓ ✓

3- Snow DA SYNOP+Nat+IMS (all) ✓ ✓ ✓

Winter 2014-2015 (December to April)  - Assess the impact of the snow observing system

SYNOP+IMS (1-0)

SYNOP+Nat (2-0)

SYNOP+Nat+IMS (3-0)   -> oper

Impact on T2m Forecasts:

Normalized RMSE for T2m FC difference 

compared to the reference (OL)

Best T2m Forecast when all observations, 

combining in situ and IMS, are assimilated.
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Impact of IMS snow cover assimilation (case 3-2)

All data assimilated (Synop+Nat+IMS)

compared to all in situ data assimilated (SYNOP+Nat)

-> Further T2m forecasts error reduction, 

significant at short range

Impact of National data (case 3-1)
All data assimilated (SYNOP+Nat+IMS)

compared to SYNOP+IMS assimilation

-> Further T2m forecasts error reduction at medium range

Contribution & complementarities of each observation types 

to improve T2m forecasts at short and medium ranges
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Summary on snow analysis

1. Snow initialisation has a large impact on Numerical Weather Forecast  

2. Not all NWP systems have a snow analysis

Snow data assimilation systems relies on relatively simple approaches (Cressman,OI)

3. DA of in situ snow depth and snow cover (IMS used at ECMWF)

- In situ snow depth reporting: issues on availability and reporting practices

- National Met services encouraged to improve snow depth reports availability on the  

Global Telecommunication System (GTS)

- Future: aim at using level 1 satellite data to analyse snow water equivalent (mass).    

 Require appropriate satellite mission and adequate observation operator
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➢ Nudging scheme (1995-1999): soil moisture increments     x  (m3m-3):

D: nudging coefficient (constant=1.5g/Kg), t = 6h, q specific humidity

Uses upper air analysis of specific humidity

Prevents soil moisture drift in summer

➢ Optimal interpolation 1D OI (1999-2010)

and   : optimal coefficients

OI soil moisture analysis based on a dedicated screen level parameters (T2m Rh2m) analysis

➢ Simplified Extended Kalman Filter (EKF), Nov 2010-2019

- Motivated by better using T2m, RH2m

- Opening the possibility to assimilate satellite data related to surface soil moisture.

➢ EDA-SEKF (June 2019)

- Use the Ensemble Data Assimilation to compute the SEKF Jacobians

A history of soil moisture analysis at ECMWF

Mahfouf, ECMWF News letter 2000, 

Douville et al., Mon Wea. Rev. 2000

 t D Cv q a  q b 

  T
a  T

b  Rh
a
Rh

b 

Drusch et al., GRL, 2009

de Rosnay et al., QJRMS 2013



α β

βα

x

x
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T_2m RH_2m background

SM1, SM2, SM3: soil moisture

background for layers 1-3

Jacobians, 

screen observation operator

T_2m 

RH_2m 

Screen level analysis 

(2D-OI)

T_2m RH_2m
𝜎𝑜𝑇2𝑚 = 2𝐾 𝜎𝑜𝑅𝐻2𝑚 = 10%

ASCAT SM

SMOS TB

Soil Analysis (SEKF)

SM1, SM2, SM3

𝜎𝑜𝐴𝑆𝐶𝐴𝑇 = 0.05 𝑚3𝑚
_3

𝜎𝑜 𝑇2𝑚 = 1𝐾
𝜎𝑜𝑅𝐻2𝑚 = 4%

𝜎𝑏 = 0.01 𝑚3𝑚
_3

NWP Forecast

Coupled Land-Atmosphere

Soil Analysis for NWP (SEKF)

Observations Observations
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Screen level observations are: two meter temperature 

and relative humidity. Observations are available on 

the GTS:

Diversity of Report types:

- Drifting buoys, automatic and manual stations on ships, 

etc..

- Automatic and manual SYNOP stations, METAR 

(METeorological Airport Reports), etc…

SYNOP T2m, RH2m in situ data assimilated in a 2D-OI

Ocean and Land observations

Used for Land Data Assimilation

Analysed T2m, RH2m (output of the 2D-OI) is 

used as input of the soil analysis
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Soil moisture satellite observations
Active microwave data: 

ASCAT: Advanced Scatterometer

On MetOP-A  (2006-), MetOP-B (2012-), MetOP-C (2018-)

C-band (5.6GHz) backscattering coefficient

EUMETSAT Operational misison

Passive microwave data:

SMOS: Soil Moisture & Ocean Salinity (2009-)

L-band (1.4 GHz) Brightness Temperature

ESA Earth Explorer, edicated soil moisture mission

ASCAT soil moisture (m3m-3)
Stdev(O-B)

Sept. 2013 SMOS Brightness temperature (K)

SMOSMetOP-C

Data from SMAP (Soil 

Moisture Active Passive), 

NASA soil moisture 

mission, also available
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Simplifed EKF soil moisture analysis 

For each grid point, analysed soil moisture state vector xa:
x a= x b+ K (y-H [x b])

x background soil moisture state vector, 
H non linear observation operator

y observation vector 

K Kalman gain matrix, fn of 
H (linearsation of H), P and R (covariance matrices 

of background and observation errors). 

Observations used at ECMWF:

For operational NWP: 

•Conventional SYNOP pseudo observations (analysed T2m, RH2m)

•Satellite: MetOp-A/B ASCAT and SMOS soil moisture

The simplified EKF is used to corrects 
the soil moisture trajectory of the 

Land Surface Model

Drusch et al., GRL, 2009

de Rosnay et al., ECMWF News Letter 127, 2011

de Rosnay et al., QJRMS,  2013

Used at ECMWF (operations and ERA5), DWD, UKMO

 See KF lecture 

from M Bonavita

on Tuesday



© ECMWF

Surface-only LDAS

P =
0.012 0 0
0 0.012 0
0 0 0.012

xt
a = xt

b + K (yt- H [xt
b])

𝐱b(t) =

𝑆𝑀𝑙1(𝑡)

𝑆𝑀𝑙2(𝑡)

𝑆𝑀𝑙3(𝑡)

y(tobs) =
𝑇2𝑚
𝑅𝐻2𝑚

𝐴𝑠𝑐𝑎𝑡ASCATsm

Control vector Observations vector Observations operator

[K]

[%]

[m3/m3]

Simplifed EKF soil moisture analysis 

Elements of the SEKF for each individual grid point in the case of 

assimilation of three observations T2m, RH2m, ASCAT: 

H [xb
t]) =

𝑇2𝑚
𝑅𝐻2𝑚

𝑆𝑀𝑡𝑜𝑝

𝐑 =
12 0 0
0 42 0
0 0 0.052

Background error

SM: volumetric soil moisture of the model layers in m3/m3

Observation error
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Surface-only LDAS

Jacobians computation in Finite differences (until June 2019)

Estimated by finite differences by perturbing individually each component xj of the control vector x by 

a small amount 𝛿𝑥𝑗 . One perturbed model trajectory is computed for each control valriable

In the ECMWF soil analysis the perturbation size is set to 0.01m3m-3  

Ctrl trajectory not pert

09:00

Trajectory perturbed SMl1

21:00

H=

𝑇2𝑚𝑝𝑒𝑟𝑡1−𝑇2𝑚

𝛿𝑆𝑀𝑙1

𝑇2𝑚𝑝𝑒𝑟𝑡2−𝑇2𝑚

𝛿𝑆𝑀𝑙2

𝑇2𝑚𝑝𝑒𝑟𝑡3−𝑇2𝑚

𝛿𝑆𝑀𝑙3

𝑅𝐻2𝑚𝑝𝑒𝑟𝑡1−𝑅𝐻2𝑚

𝛿𝑆𝑀𝑙1

𝑅𝐻2𝑚𝑝𝑒𝑟𝑡2−𝑅𝐻2𝑚

𝛿𝑆𝑀𝑙2

𝑅𝐻2𝑚𝑝𝑒𝑟𝑡3−𝑅𝐻2𝑚

𝛿𝑆𝑀𝑙3

𝑆𝑀𝑙1𝑝𝑒𝑟𝑡1−𝑆𝑀𝑙1

𝛿𝑆𝑀𝑙1

𝑆𝑀𝑙1𝑝𝑒𝑟𝑡2−𝑆𝑀𝑙1

𝛿𝑆𝑀𝑙2

𝑆𝑀𝑙1𝑝𝑒𝑟𝑡3−𝑆𝑀𝑙1

𝛿𝑆𝑀𝑙3

Simplifed EKF soil moisture analysis (2010-2019) 

Trajectory perturbed SMl2

Trajectory perturbed SMl3
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EDA Jacobians

T2m, RH2m

& soil moisture

Background

T_2m 

RH_2m 

Screen level analysis 

(2D-OI)

T_2m RH_2m
𝜎𝑜𝑇2𝑚 = 2𝐾 𝜎𝑜𝑅𝐻2𝑚 = 10%

ASCAT SM

SMOS SM

Soil Analysis (SEKF)

SM1, SM2, SM3

NWP Forecast

Coupled Land-Atmosphere

ECMWF Soil Analysis in IFS 46r1 (from June 2019)

In situ

Observations

Satellite 

Ensemble Data 

Assimilation (EDA)

Land initial conditions

σSMOS_NN= 0.02+3ε

σASCAT= 0.05m3/m3

σO_T2M= 1K

σO_RH2M= 4%

σb_= 0.01m3/m3

SMOS 

Neural 

network

SMOS TB

0-7cm
7-28cm
28-100cm

100-289cm
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Surface-only LDAS

Jacobians computation based on the EDA (from June 2019)

Use the Ensemble Data Assimilation (EDA) spread to compute the SEKF Jacobians

(in the case of assimilation of four observations T2m, RH2m, ASCAT, SMOS)

Single trajectory

09:00 21:00

𝐶𝑜𝑣𝑎𝑟(𝑇
2𝑚
,𝑆𝑀

1)

𝑉𝑎𝑟(𝑆𝑀
1
)

𝐶𝑜𝑣𝑎𝑟(𝑇
2𝑚
,𝑆𝑀

2)

𝑉𝑎𝑟(𝑆𝑀
2
)

𝐶𝑜𝑣𝑎𝑟(𝑇
2𝑚
,𝑆𝑀

3)

𝑉𝑎𝑟(𝑆𝑀
3
)

𝐶𝑜𝑣𝑎𝑟(𝑅𝐻
2𝑚
,𝑆𝑀

1
)

𝑣𝑎𝑟(𝑆𝑀
1
)

𝐶𝑜𝑣𝑎𝑟(𝑅𝐻
2𝑚
,𝑆𝑀

2
)

𝑉𝑎𝑟(𝑆𝑀
2
)

𝐶𝑜𝑣𝑎𝑟(𝑅𝐻
2𝑚
,𝑆𝑀

3
)

𝑉𝑎𝑟(𝑆𝑀
3
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

1
)

𝑣𝑎𝑟(𝑆𝑀
1
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

2
)

𝑉𝑎𝑟(𝑆𝑀
2
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

3
)

𝑉𝑎𝑟(𝑆𝑀
3
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

1
)

𝑣𝑎𝑟(𝑆𝑀
1
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

2
)

𝑉𝑎𝑟(𝑆𝑀
2
)

𝐶𝑜𝑣𝑎𝑟(𝑆𝑀
1
,𝑆𝑀

3
)

𝑉𝑎𝑟(𝑆𝑀
3
)

Simplifed EKF soil moisture analysis (from June 2019) 

𝜌1 𝜌2 𝜌3

𝜌1 𝜌2 𝜌3

𝜌1 𝜌2 𝜌3

𝜌1 𝜌2 𝜌3

with  i soil layer index,   ρi = 1+ (i-1) αsekf and αsekf = 0.6 tapering coefficient

∘H = 
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EDA SEKF and SMOS NN DA impact 

➢ Enhanced coupling:
- Use the EDA to compute the SEKF Jacobian

➢ Improved efficiency:
- CPU reduction from EDA SEKF, cost neutral for SMOS

Reduction of the SEKF CPU cost by a factor ~3.6

NPES*THREADS 45r1 46r1

Tco1279 300*9 1580s 435s

Tco399 54*6 815s 235s

Different Jacobians tapering 

coefficients at depth 
EDA&SMOS  - CTRL 

SMOS – CTRL

SMOS innovation (obs-model) 

01 August 2017 (m3/m3) 

Atmospheric impact (T2m) 

compared to 45r1 CTRL
34
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Volumetric Soil Moisture increments (m3/m3)

(accumulated)

Layer1 

(0-7cm)

Layer2 

(7-28cm)

25-30 June 2013

ASCAT Soil Moisture data assimilation for NWP

SYNOP ASCAT

Layer 1 0.68 1.43

Layer 2 1.48 0.68

Layer 3 4.28 0.46

Vertically integrated 

Soil Moisture increments (stDev in mm)

ASCAT more increments than SYNOP at surface

SYNOP give more increments at depth

 For 12h DA window, link obs to root zone stronger for 

T2m,RH2m than for surface soil moisture observations
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Summer Winter

Temperature

HumidityHumidity

Temperature

Soil analysis for NWP: impact on the atmospheric forecast

NWP with no soil Analysis

NWP with 2013 version of soil analysis

NWP with current surface analysis

 Very large impact of soil moisture 

initialisation on near-surface weather 

forecast
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1. Significant impact of soil moisture analysis on low level atmospheric forecasts

2. Approaches: 1D-OI (Météo-France, ECMWF ERA-I);  SEKF (DWD, ECMWF, UKMO); 

SEKF-EDA(ECMWF), Offline Land Surface Model (LSM) using analysed atmospheric 

forcing (NCEP: GLDAS / NLDAS)

3. Data: Most Centres rely on screen level data (T2M and RH2m) through a dedicated OI 

analysis, ASCAT (UKMO, ECMWF NWP &  EUMETSAT H-SAF), SMOS soil moisture

Summary on soil moisture analysis
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➢ Most NWP centres analyse soil moisture and/or snow depth

➢ Variety of DA methods for snow and soil moisture at ECMWF and other NWP centres

➢ Land Data Assimilation Systems: run separately from the atmospheric data 

assimilation, but first guess forecast is coupled  weakly coupled assimilation, 

coupling enhanced with SEKF-EDA

➢ Longer term: coupling with river routing

Summary
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