Model error In data assimilation

Patrick Laloyaux



What you have learned so far

The analysis is computed by minimising 4D-Var
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using the model’s equations
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4D-Var combines model predictions
with observations (errors have to
be random with zero-mean)



Most observations have biases

The USS Jeannette (1879, Artic, 33 crew members)

SST measurements
from buckets have a
cold bias (~0.4C)
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Photo # NH 52000 Steamer Jeannette sinking after being crushed by Arctic ice, June 1881

THE SINKING OF THE JEANNETTE.

Photo # NH 52002 Jeannette's crewmen drag their boats over the Arctic ice, J
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DRAGGING THE BOATS OVER THE ICE

Photo # NH 92142  LCdr. DeLong and his party wading ashore on the Lena Delta, Siberia, 17 Sept. 1881
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WADING ASHORE.

Courtesy of P. Brohan and G. Compo



Most observations have biases

D-Day (1944, France)
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SST measurements from Engine Room Intake (ERI) have a warm bias (~0.2C)



Assimilation of biased observations

The standard 4D-Var formulation is designed to cope with random, zero-mean errors
from the model and the observations
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Error

If biased observations are assimilated, the resulting analysis will be biased. In this
case the background is more accurate than the analysis!



How to remove observation biases

Before the assimilation, based on instrument properties
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During the assimilation, using information from the model and reference observations
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- designed to estimate simultaneously the initial condition and parameters that
represent systematic errors in the observationssystem

—> the bias model copes with instrument miscalibration (e.g. radiances systematically
too warm by 1K) or systematic errors in the observation operator



How to estimate model biases

The GPS satellites are used for positioning and navigation. GPS-RO (Radio
Occultation) is based on analysing the bending caused by the atmosphere along paths
between a GPS satellite and a receiver placed on a low-earth-orbiting satellite.

Occulting GPS

Satellite
< Time Delay & Bend Angle

Provide Density vs. Altitude

Occulting LEO
Satellite

- As the LEO moves behind the earth, we obtain a profile of bending angles
- Temperature profiles can then be derived (a vertical interval between 10-50 km)

- GPS-RO can be assimilated without bias correction. They are good for
highlighting errors/biases



How to estimate model biases

Temperature estimate from the GPS-RO measurements
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Courtesy of Corwin J. Wright



How to estimate model biases

The first-guess trajectory of the model can be compared to unbiased observations
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Errors in models are often systematic rather than random, zero-mean
- Model has a temperature cold bias in the lower/mid stratosphere

- Model has a warm bias in the upper stratosphere



How to estimate model biases

GPS-RO temperature retrievals provide an homogeneous observing system that
can be used to study the spatial distribution of the model error
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- The IFS model shows very large structures in the temperature model bias



Assimilation with a biased model

The standard 4D-Var formulation is designed to cope with random, zero-mean errors
from the model and the observations
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The model produces a biased first-guess trajectory. Even if observations are
unbiased and accurate, the final analysis will be biased.



Weak constraint 4D-Var

We assume that the model is not perfect, adding an error term n in the model equation
xrp = Mp(xp—1)+n fork=1,2--- K

The model error estimate n contains 3 physical fields

» temperature

= vorticity

= Divergence

Constant model error forcing over the assimilation window to correct the model bias
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—> Introduce additional controls to target an unbiased analysis

- The model error covariance matrix Q constrains the model error field (22 millions
of parameters)



Weak constraint 4D-Var

Strong constraint 4D-Var

Weak constraint 4D-Var
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- Large bias and standard deviation
in the analysis
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Bias in the analysis has been
reduced, standard deviation as well



Specification of B and Q

T 31} IFS is based on a hybrid spectral/grid-point model
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—> First wave numbers contain large scale signals
—> Last wave numbers contain small scale signals



Specification of B and Q

Assimilation is computed in spectral space
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Weak constraint 4D-Var results with the QG model

The Quasi-Geostrophic (QG) model is very
important in geophysical fluid dynamics as it
describes some aspects of flows in the oceans
and atmosphere very well

Model bias for the upper level
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Experiment framework

- A bias is introduced in the model
T = Mp(zp—1)+n fork=12 - K
- Observations are generated
- Can weak constraint 4D-Var estimate correctly the model bias?



Weak constraint 4D-Var results with the QG model

Weak constraint 4D-Var
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Weak constraint 4D-Var results with the QG model
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Information is cycle in the weak constraint 4D-Var
—> First-guess trajectory fir better and better the observations
—> More accurate analysis is produced



Weak constraint 4D-Var results with IFS

Bias estimated by the weak constraint 4D-Var
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Weak constraint 4D-Var results with IFS

Departure statistics with radiosondes
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—> Stratospheric bias in the analysis and in the first guess is reduced



Weak constraint 4D-Var results with IFS

Departure statistics with GPS-RO
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—> Stratospheric bias in the analysis and in the first guess is reduced



Summary
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Summary

How can we separate background and model error?
How can we specify B and Q covariance matrices?

Random errors tend to be small scales while systematic errors tend to be large scale

Standard deviation in B

Standard deviation in Q
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Weak constraint 4D-Var with scale separation reduces the stratospheric temperature
bias in the analysis



In real world applications

How do | know if my observations are biased?
How do | know if my model is biased?
I’'m not running twin experiments, | don’t know the truth

Reference observations are used

Radiosondes

GPS-RO



In real world applications

From bias-blind to bias-aware data assimilation
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Future of weak constraint 4D-Var

In Numerical Weather Prediction, weak constraint 4D-Var could be investigated to
correct other variables (e.g. humidity) or other areas (e.g. troposphere)

In climate reanalysis, weak constraint 4D-Var could be applied over the whole
period to reduce spurious climate change due to changes in the observing system

1 .
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In other component of the Earth system, weak constraint 4D-Var could be
applied to the ocean to deal with temperature/ salinity biases

Any questions? Feel free to contact me patrick.laloyaux@ecmwf.int



