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Interpreting the weather situation

Definition
Analysis: The process of approximating the true state of a (geo-)physical
system at a given time using the available knowledge.

8 First hand analysis of synoptic
observations in 1850 by
LeVerrier and Fitzroy.

8 Polynomial Interpolation in the
1950s by Panofsky with the
developments of computers

f observations

analysis

Space

The black dots denote the data points, while the
red curve shows the polynomial interpolation.
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Background
8 An important step forward was made by Gilchrist and Cressman (1954),

who introduced the idea of using a previous numerical forecast to provide
a preliminary estimate of the analysis.

f observations

Space

background

8 This prior estimate was called the background.
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Optimal interpolation
8 Bergthorsson and Döös (1955) took the idea of using a background field a

step further by casting the analysis problem in terms of increments which
were added to the background.

f observation

background

Space

observation
increment

Space

δf
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8 The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.

c©ECMWF 5 / 37



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Optimal interpolation
8 Bergthorsson and Döös (1955) took the idea of using a background field a

step further by casting the analysis problem in terms of increments which
were added to the background.

f observation

analysis

background

Space

observation
increment

Space
increment
analysis

δf

8 The increments were weighted linear combinations of nearby observation
increments (observation minus background), with the weights determined
statistically.

8 This idea of statistical combination of background and synoptic
observations led ultimately to Optimal Interpolation.

8 The use of statistics to merge model fields with observations is
fundamental to all current methods of analysis.
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Data Assimilation
8 An important change of emphasis happened in the early 1970s with the

introduction of primitive-equation models.
8 Primitive equation models support inertia-gravity waves. This makes them

much more fussy about their initial conditions than the filtered models that
had been used hitherto.

8 The analysis procedure became much more intimately linked with the
model. The analysis had to produce an initial state that respected the
model’s dynamical balances.

8 Unbalanced increments from the analysis procedure would be rejected as
a result of geostrophic adjustment.

8 Initialisation techniques (which suppress inertia-gravity waves) became
important.
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Data Assimilation
The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate
1. To incorporate nutrients into the body, especially after digestion.

ë Food is assimilated and converted into organic tissue.

2. To incorporate or absorb knowledge into the mind.
ë The teacher paused in their lecture to allow the students to assimilate what they had said.

3. To absorb a group of people into a community.
ë The aliens in the science-fiction film wanted to assimilate human beings into their own race.
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Data Assimilation
The idea that the analysis procedure must present observational information to
the model in a way in which it can be absorbed (i.e. not rejected by geostrophic
adjustment) led to the coining of the term data assimilation.

Wiktionary: Assimilate
1. To incorporate nutrients into the body, especially after digestion.

ë Food is assimilated and converted into organic tissue.

2. To incorporate or absorb knowledge into the mind.
ë The teacher paused in their lecture to allow the students to assimilate what they had said.

3. To absorb a group of people into a community.
ë The aliens in the science-fiction film wanted to assimilate human beings into their own race.

ë The process by which the Borg integrate beings and cultures into their collective.

Our definition
8 The process of objectively adapting the model state to observations in a

statistically optimal way taking into account model and observation errors
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Data Assimilation
8 A final impetus towards the modern concept of data assimilation came

from the increasing availability of asynoptic observations from satellite
instruments.

8 It was no longer sufficient to think of the analysis purely in terms of spatial
interpolation of contemporaneous observations.

8 The time dimension became important, and the model dynamics assumed
the role of propagating observational information in time to allow a synoptic
view of the state of the system to be generated from asynoptic data.

8 Example of satellite data
coverage in 6 hours
(AMSU-A data).
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Elementary Statistics
Problem
Suppose we want to estimate the temperature of this room, given:

8 A prior estimate: Tb.
ë E.g., room thermostat or assume we measured the temperature an hour ago, and

we have some idea (i.e. a model) of how the temperature varies as a function of
time, the number of people in the room, whether the windows are open, etc.

8 A thermometer: To.
8 Denote the true temperature of the room by Tt .

Errors
8 The errors in Tb and To are:

εb = Tb−Tt

εo = To−Tt

8 εb and εo are random variables (or stochastic variables)
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Elementary Statistics
Hypotheses

8 We will assume that the error statistics of Tb and To are known.

Possible values

Error distribution
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Elementary Statistics
Hypotheses

8 We will assume that the error statistics of Tb and To are known.

Possible values

Error distribution

8 We will assume that Tb and To have been adjusted (bias corrected) so that
their mean errors are zero:

εb = εo = 0 .

8 There is usually no reason for εb and εo to be connected in any way:

εoεb = 0 .

8 The quantity εoεb represents the covariance between the error of our prior
estimate and the error of our thermometer measurement.
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Elementary Statistics
8 We estimate the temperature of the room as a linear combination of Tb

and To:
Ta = αTo +βTb + γ
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Elementary Statistics
8 We estimate the temperature of the room as a linear combination of Tb

and To:
Ta = αTo +βTb + γ

8 Denote the error of our estimate as εa = Ta−Tt .
8 We have:

Ta = Tt + εa = α (Tt + εo)+β (Tt + εb)+ γ

8 Taking the mean and rearranging gives:

εa = (α+β−1)Tt + γ

8 We want the estimate to be unbiased: εa = 0.
8 Since this holds for any Tt , we must have

ë γ = 0, and
ë α+β−1 = 0.

8 I.e. Ta = αTo +(1−α)Tb
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Elementary Statistics
8 The general Linear Unbiased Estimate is:

Ta = αTo +(1−α)Tb

8 Now consider the error of this estimate.
8 Subtracting Tt from both sides of the equation gives

εa = αεo +(1−α)εb
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Elementary Statistics
8 The general Linear Unbiased Estimate is:

Ta = αTo +(1−α)Tb

8 Now consider the error of this estimate.
8 Subtracting Tt from both sides of the equation gives

εa = αεo +(1−α)εb

8 The variance of the estimate is:

ε2
a = α

2
ε2

o +2α (1−α)εoεb +(1−α)2
ε2

b

8 With the previous hypothesis εoεb = 0:

ε2
a = α

2
ε2

o +(1−α)2
ε2

b
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Elementary Statistics

ε2
a = α

2
ε2

o +(1−α)2
ε2

b

We can easily derive some properties of our estimate:

8
dε2

a

dα
= 2αε2

o−2 (1−α)ε2
b

8 For α = 0, ε2
a = ε2

b and dε2
a

dα
=−2ε2

b < 0

8 For α = 1, ε2
a = ε2

o and dε2
a

dα
= 2ε2

o > 0
α

0 0.2 0.4 0.6 0.8 1

ε2
a

From this we can deduce:
8 For 0≤ α≤ 1, ε2

a ≤max(ε2
b,ε

2
o)

8 The minimum-variance estimate occurs for α ∈ (0,1).

8 The minimum-variance estimate satisfies ε2
a < min(ε2

b,ε
2
o), which means it

is lower than the variance of each piece of information.
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Elementary Statistics
The minimum-variance estimate occurs when

dε2
a

dα
= 2αε2

o−2(1−α)ε2
b = 0

⇒ α =
ε2

b

ε2
b + ε2

o

.

It is not difficult to show that the error variance of this minimum-variance
estimate is:

1

ε2
a

=
1

ε2
b

+
1

ε2
o

,

and the analysis is:
1

ε2
a

Ta =
1

ε2
b

Tb +
1

ε2
o

To .
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Extension to Multiple Dimensions
8 Now, let’s turn our attention to the multi-dimensional case.
8 Instead of a scalar prior estimate Tb, we now consider a vector xb.
8 We can think of xb as representing the entire state of a numerical model at

some time.
8 The elements of xb might be grid-point values, spherical harmonic

coefficients, etc., and some elements may represent temperatures,
humidity, others wind components, etc.

8 We refer to xb as the background.
8 Similarly, we generalise the observation to a vector y.
8 y can contain a disparate collection of observations at different locations,

and of different variables.
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Extension to Multiple Dimensions
8 The major difference between the simple scalar example and the

multi-dimensional case is that there is no longer a one-to-one
correspondence between the elements of the observation vector and
those of the background vector.

x→ ← y
8 It is no longer trivial to compare observations and background.
8 When the background is a state of a numerical model at some time

ë Observations are not necessarily located at model gridpoints
ë The observed variables (e.g. radiances) may not correspond directly with any of the

variables of the model.
ë To overcome this problem, we must assume that our model is a more-or-less

complete representation of reality, so that we can always determine “model
equivalents” of the observations.
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Extension to Multiple Dimensions
8 We formalise this by assuming the existence of an observation operator,

H .
8 Given a model-space vector, x, the vector H (x) can be compared directly

with y, and represents the “model equivalent” of y.

x
H (·)−−→H (x)→ ← y

8 For now, we will assume that H is perfect. I.e. it does not introduce any
error, so that:

H (xt) = yt

where xt is the true state, and yt contains the true values of the observed
quantities.

c©ECMWF 19 / 37
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Extension to Multiple Dimensions
8 As we did in the scalar case, we will look for an analysis that is a linear

combination of the available information:

xa = Fxb +Ky+c

where F and K are matrices, and where c is a vector.
8 If H is linear, we can proceed as in the scalar case and look for a linear

unbiased estimate.
8 In the more general case of nonlinear H , we will require that error-free

inputs (xb = xt and y = yt) produce an error-free analysis (xa = xt):

xt = Fxt +KH (xt)+c

8 Since this applies for any xt , we must have c = 0 and

F≡ I−KH (·)

8 Our analysis equation is thus:

xa = xb +K (y−H (xb))
c©ECMWF 20 / 37
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Extension to Multiple Dimensions

xa = xb +K (y−H (xb))

8 Remember that in the scalar case, we had

Ta = αTo +(1−α)Tb

= Tb +α(To−Tb)

8 We see that the matrix K plays a role equivalent to that of the coefficient α.
8 K is called the gain matrix.
8 It determines the weight given to the innovation y−H (xb)
8 It handles the transformation of information defined in “observation space”

to the space of model variables.
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Extension to Multiple Dimensions
8 The next step in deriving the analysis equation is to describe the statistical

properties of the analysis errors.
8 We define

εa = xa−xt

εb = xb−xt

εo = y−yt

8 We will assume that the errors are small, so that

H (xb) = H (xt)+Hεb +O(ε2
b)

where H is the Jacobian of H (if H is nonlinear).
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Extension to Multiple Dimensions
8 Substituting the expressions for the errors into our analysis equation, and

using H (xt) = yt , gives (to first order):

εa = εb +K (εo−Hεb)

8 As in the scalar example, we will assume that the mean errors have been
removed, so that εb = εo = 0. We see that this implies that εa = 0.

8 In the scalar example, we derived the variance of the analysis error, and
defined our optimal analysis to minimise this variance.

8 In the multi-dimensional case, we must deal with covariances.
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Covariance
8 The covariance between two variables xi and xj is defined as

cov(xi,xj) = (xi− xi)(xj− x j)

8 Given a vector x = (x1,x2, · · · ,xN)
T, we can arrange the covariances into a

covariance matrix, C, such that Cij = cov(xi,xj).
8 Equivalently:

C = (x−x)(x−x)T

8 Covariance matrices are symmetric and positive definite

ë symmetric: CT = C
ë positive definite: zT Cz is positive for every non-zero vector z
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Extension to Multiple Dimensions
8 The analysis error is:

εa = εb +K (εo−Hεb)

= (I−KH)εb +Kεo
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Extension to Multiple Dimensions
8 The analysis error is:

εa = εb +K (εo−Hεb)

= (I−KH)εb +Kεo

8 Forming the analysis error covariance matrix gives:

εaεT
a = [(I−KH)εb +Kεo] [(I−KH)εb +Kεo]

T

= (I−KH)εbεT
b (I−KH)T+(I−KH)εbεT

o KT

+KεoεT
b (I−KH)T+KεoεT

o KT

8 Assuming that the background and observation errors are uncorrelated
(i.e. εoεT

b = εbεT
o = 0), we find:

εaεT
a = (I−KH)εbεT

b (I−KH)T+KεoεT
o KT
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Extension to Multiple Dimensions

εaεT
a = (I−KH)εbεT

b (I−KH)T+KεoεT
o KT

8 This expression is the equivalent of the expression we obtained for the
error of the scalar analysis:

ε2
a = (1−α)2

ε2
b +α

2
ε2

o

8 Again, we see that K plays essentially the same role in the
multi-dimensional analysis as α plays in the scalar case.

8 In the scalar case, we chose α to minimise the variance of the analysis
error.

8 What do we mean by the minimum-variance analysis in the
multi-dimensional case?
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Extension to Multiple Dimensions
8 Note that the diagonal elements of a covariance matrix are variances

Cii = cov(xi,xi) = (xi− xi)2.
8 Hence, we can define the minimum-variance analysis as the analysis that

minimises the sum of the diagonal elements of the analysis error
covariance matrix.

8 The sum of the diagonal elements of a matrix is called the trace.

8 In the scalar case, we found the minimum-variance analysis by setting dε2
a

dα

to zero.
8 In the multidimensional case, we are going to set

∂trace(εaεT
a)

∂K
= 0

8 Note:
∂trace(εaεT

a)

∂K
is the matrix whose ij th element is

∂trace(εaεT
a)

∂Kij
.
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Extension to Multiple Dimensions
8 We have: εaεT

a = (I−KH)εbεT
b (I−KH)T+KεoεT

o KT.
8 The following matrix identities come to our rescue:

∂trace(KAKT)

∂K
= K(A+AT)

∂trace(KA)
∂K

= AT

∂trace(AKT)

∂K
= A

8 Applying these to ∂trace(εaεT
a)/∂K gives:

∂trace(εaεT
a)

∂K
= 2K

[
HεbεT

bHT+ εoεT
o

]
−2εbεT

bHT = 0

8 Hence: K = εbεT
b HT

[
HεbεT

b HT+ εoεT
o

]−1
.

c©ECMWF 28 / 37



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS October 29, 2014

Extension to Multiple Dimensions

K = εbεT
b HT

[
HεbεT

b HT+ εoεT
o

]−1

8 This optimal gain matrix is called the Kalman Gain Matrix.
8 Note the similarity with the optimal gain we derived for the scalar analysis:

α = ε2
b/(ε

2
b + ε2

o).
8 The variance of analysis error for the optimal scalar problem was:

1

ε2
a

=
1

ε2
b

+
1

ε2
o

8 The equivalent expression for the multi-dimensional case is:[
εaεT

a

]−1
=
[
εbεT

b

]−1
+HT

[
εoεT

o

]−1
H
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Notation
8 The notation we have used for covariance matrices can get a bit

cumbersome.
8 The standard notation is:

Pa ≡ εaεT
a

Pb ≡ εbεT
b

R ≡ εoεT
o

8 In many analysis schemes, the true covariance matrix of background error,
Pb, is not known, or is too large to be used.

8 In this case, we use an approximate background error covariance matrix.
This approximate matrix is denoted by B.
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Alternative Expression for the Kalman Gain
Finally, we derive an alternative expression for the Kalman gain:

K = PbHT [HPbHT+R
]−1

Multiplying both sides by
[
Pb−1

+HTR−1H
]

gives:[
Pb−1

+HTR−1H
]

K =
[
HT+HTR−1HPbHT][HPbHT+R

]−1

= HTR−1
[
R+HPbHT][HPbHT+R

]−1

= HTR−1

Hence:

K =
[
Pb−1

+HTR−1H
]−1

HTR−1

8 Expression 1: need the inverse of a matrix of dimension size(R)
8 Expression 2: need the inverse of a matrix of dimension size(Pb)
8 Remember that xa = xb +K (y−H (xb))
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Optimal Interpolation
8 Optimal Interpolation is a statistical data assimilation method based on the

multi-dimensional analysis equations we have just derived.
8 The method was used operationally at ECMWF from 1979 until 1996,

when it was replaced by 3D-Var.
8 The basic idea is to split the global analysis into a number of boxes which

can be analysed independently:

x(i)
a = x(i)

b +K(i)
[
y(i)−H (i)(xb)

]
where

xa =


x(1)

a

x(2)
a
...

x(M)
a

 xb =


x(1)

b

x(2)
b
...

x(M)
b

 K =


K(1)

K(2)

...
K(M)



x(1)a x(2)a

x(i)a x(i+1)
a
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Optimal Interpolation

x(i)
a = x(i)

b +K(i)
(

y(i)−H (i)(xb)
)

8 In principle, we should use all available observations to calculate the
analysis for each box. However, this is too expensive.

8 To produce a computationally-feasible algorithm, Optimal Interpolation (OI)
restricts the observations used for each box to those observations which
lie in a surrounding selection area:

Analysis box

Observations
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Optimal Interpolation

x(i)
a = x(i)

b +K(i)
(

y(i)−H (i)(xb)
)

8 In principle, we should use all available observations to calculate the
analysis for each box. However, this is too expensive.

8 To produce a computationally-feasible algorithm, Optimal Interpolation (OI)
restricts the observations used for each box to those observations which
lie in a surrounding selection area:

Analysis box

Selection area

Used observations

Rejected observations
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Optimal Interpolation
8 The gain matrix used for each box is:

K(i) =
(
PbHT)(i)[(HPbHT)(i)+R(i)

]−1

8 Now, the dimension of the matrix
[(

HPbHT
)(i)

+R(i)
]

is equal to the
number of observations in the selection box.

8 Selecting observations reduces the size of this matrix, making it feasible to
use direct solution methods to invert it.

8 Note that to implement Optimal Interpolation, we have to specify
(
PbHT

)(i)
and

(
HPbHT

)(i)
. This effectively limits us to very simple observation

operators, corresponding to simple interpolations.
8 This, together with the artifacts introduced by observation selection, was

one of the main reasons for abandoning Optimal Interpolation in favour of
3D-Var.
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Summary
8 We derived the linear analysis equation for a simple scalar example.
8 We showed that a particular choice of the weight α given to the

observation resulted in an optimal minimum-variance analysis.
8 We repeated the derivation for the multi-dimensional case. This required

the introduction of the observation operator.
8 The derivation for the multi-dimensional case closely parallelled the scalar

derivation.
8 The expressions for the gain matrix and analysis error covariance matrix

were recognisably similar to the corresponding scalar expressions.
8 Finally, we considered the practical implementation of the analysis

equation, in an Optimal Interpolation data assimilation scheme.
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