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Outline

• What is data assimilation and how does it work?

• Observations and model error sources

• Blending observations and model: the Bayes perspective

• Particle Filters

• Kalman Filter methods

• Variational methods

• Hybrid data assimilation
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Data Assimilation

NWP definition: Process by which “optimal” initial conditions 

for numerical forecasts are estimated.

– The best analysis (initial conditions) is the analysis that leads to the 

best forecast

– Optimal in a statistical sense: minimises error and/or maximises 

probability of the analysis 

– Do it quickly – typically in less than 45 minutes on a large high 

performance computer (for global NWP; for local area NWP this 

can be much less!)
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Data Assimilation

Data Assimilation has two main goals:

– Provide the best estimate of the initial state of the atmosphere-

land-ocean system out of all available information (model + 

observations) 

– Quantify the uncertainty of our estimate of the initial state (this is 

necessary to be able to initialise an ensemble forecast!)  
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The Data assimilation cycle

 An analysis is not produced by observations alone!

 The observations are used to correct errors in the short forecast from the 
previous analysis time (every 12 hours at ECMWF, 6-hourly in other global 
NWP; more frequently for higher resolution, local area models).

 The short range forecast carries information from past observations into 
the current analysis 



The Data assimilation cycle

 At ECMWF, twice a day about 30,000,000 observations are used to correct 
the 150,000,000 variables that define the model’s virtual atmosphere.

 This is at ECMWF done by a 4-dimensional adjustment in space and time 
based on the available observations (4D-Var); this operation takes as much 
computer power as the 10-day forecast.



The observations



WMO Integrated Global Observing System

Courtesy: WMO
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Distribution of in situ observations
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Satellite data sources used by ECMWF’s analysis

Imagers: SSMI, SSMIS, AMSR-E, 

TMI

OzoneGPS radio occultations

Sounders: NOAA AMSU-A/B, HIRS, AIRS, IASI, MHS

Geostationary+MODIS: IR and AMVScatterometer ocean low-level winds: ASCAT



Observation errors

● Even current global observing system is not able to observe the atmosphere 

completely (data voids): from a mathematical standpoint data assimilation is an 

under-determined problem

● Most satellite observations (e.g. radiances) are only indirectly related to the 

quantities of interest (i.e., grid point values of T,u,v,q,O3,…)

● Many satellite observations have coarse vertical resolution

● Most observations measure quantities not located at grid points

In order to compare observations (y) and model (x) we need to perform spatial 

and temporal interpolations of the model fields and (for satellite observations) 

transform model fields into radiances: we call this set of operations the 

observation operator (H ):

𝐲 =H 𝐱



Observation errors

• Observations are affected by different types of errors

• Denoting y* as the true observations of the model state (𝐲∗ =H 𝐱∗ ):

𝐲 − 𝐲∗ = 𝜀𝑜 = 𝜀𝐺 + 𝜀𝑀 + 𝜀𝑅 + 𝜀𝐻

𝜀𝐺 =Gross errors (incorrect coding of observation, duplicates, incorrect 

location, wrong cloud clearing, etc.). 

𝜀𝑀 =Measurement errors (instrument noise)

𝜀𝑅 =Representativity errors (e.g., in situ observations compared to grid point 

model value)

𝜀𝐻 =Observation operator (Forward model) errors (e.g., errors in the radiative 

transfer model, interpolation errors, etc.)



Observation errors

𝐲 − 𝐲∗ = 𝜀𝑜 = 𝜀𝐺 + 𝜀𝑀 + 𝜀𝑅 + 𝜀𝐻

• 𝜀𝐺 (gross errors) are dealt with by Observation Quality Control techniques (more on 

this later this week); Some of these checks are applied before ingesting the 

observations (Climatological checks, consistency checks, first guess checks), others 

are part of the analysis algorithm itself (buddy checks, variational quality control)

• Observations are assumed to be un-biased:

𝜀𝑜 = 0

• Biases are dealt with specific Bias Correction techniques (more on this later   this 

week), which can be part of the analysis algorithm itself (e.g., Variational Bias 

Correction)

• The covariance matrix of the observation errors is denoted as R:

𝜀𝑜𝜀𝑜
𝑇 = 𝐑



The forecast model



The forecast model is a very important part of 
the data assimilation system

 The short range forecast carries information from past observations into 
the current analysis (this is called “the background”): we need a good 
model to do this job

 A good model starting from accurate previous analysis will produce an 
accurate background        the analysis will make only small corrections to 
the background 

 In fact when the analysis makes large corrections to the background state is 
usually a sign that something interesting is happening… (e.g., rapid 
development not present in the forecast; suspect observations)

 In modern data assimilation methods (4D-Var, EnKF, PF) the analysed state 
is constructed so as to respect the physical and dynamical balances of the 
model the model is an integral part of the analysis algorithm



The forecast model is a very important part of 
the data assimilation system

Most important physical processes in the ECMWF model



Model errors

• Despite their increasing complexity and sophistication models are far from perfect!

• Sources of model error include: missing physical processes, errors in parametrizations of 

physical processes, discretisation errors (from continuous PDEs to discrete formulation), etc., 

• We define model error as (* denotes true state, i is a time index):

𝒙𝒊
∗ =M 𝒙𝒊−𝟏

∗ + 𝛈𝑖

• Model error can in general have non zero mean:

𝛈𝑖 ≠ 0

• The covariance matrix of the model errors is denoted as Q:

𝛈𝑖𝛈𝑖
𝑇 = 𝐐𝑖

• The treatment of model error in DA will be discussed in more detail in a lecture later this week



Blending observations and model 

information: the Bayes perspective
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The Bayes perspective

• Both observations and models are affected by random errors

• This means that they should be described as random variables

• All we can know about random variables are their probability distribution 

functions:

Pr 𝑎 ≤ 𝑋 ≤ 𝑏 𝑎׬=
𝑏
𝑝 𝑥 𝑑𝑥



The Bayes perspective

• The Bayes law descends directly by the definition of conditional probabilities:

𝑝 𝐴, 𝐵 = 𝑝 𝐴|𝐵 𝑝 𝐵 = 𝑝 𝐵|𝐴 𝑝 𝐴

֜

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵

Where:

𝑝 𝐴, 𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝐴 𝑎𝑛𝑑 𝐵 ℎ𝑎𝑝𝑝𝑒𝑛𝑖𝑛𝑔 (𝑗𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

𝑝 𝐴|𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝐵 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑝 𝐴 , 𝑝 𝐵 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝐵 ℎ𝑎𝑝𝑝𝑒𝑛𝑖𝑛𝑔 (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑏. 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)



The Bayes perspective

• An illustration (http:en.wikipedia.org/wiki/Base_rate_fallacy): 

The police have been issued with breathalysers which never fail to detect a drunk person but have 

a 5% rate of false positives. Prior campaigns have shown that, on average, one in one thousand 

drivers drives drunk. If the police stop a driver at random, and he/she results positive to the 

breathalyser, what is the probability that he/she is actually drunk?

Event A: being a drunk driver. Probability of being a drunk driver, before being tested:  𝑝 𝐴 = 0.001

Event B: testing positive to the breathalyser. The probability of testing positive is 1 for the drunken 

subset of the drivers (0.001) and 0.05 for the sober subset of the drivers (0.999):                    

𝑝 𝐵 = 1 ∗ 0.001 + 0.999 ∗ 0.05 = 0.05095

Probability of testing positive to the breathalyser when drunk: 𝑝 𝐵|𝐴 = 1

Probability of being drunk after testing positive to the breathalyser, 𝑝 𝐴|𝐵 :    

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵
=
1 ∗ 0.001

0.05095
= 0.0198

In words: out of 1000 people stopped by the police, about 51 will result positive, but the probability that 

anyone of them is actually drunk is less than 2%. (This shows how Bayesian thinking can be useful 

even beyond data assimilation!)   



• At an abstract level, we can think of the analysis process as updating our prior knowledge about the state, 

represented by a background forecast and the pdf of its errors, with new observations, represented by 

their values and the pdf of their errors: 

𝑝 𝒙|𝒚 =
𝑝 𝒚|𝒙 𝑝 𝒙

𝑝 𝒚
=

𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙

𝑝 𝒚
𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙

• 𝑝 𝒙𝑏|𝒙 = prior pdf (encapsulate our knowledge about the state before new observations)

• 𝑝 𝒚|𝒙 = observations likelihood (pdf of the observations conditioned on the state)

• 𝑝 𝒙|𝒚 = posterior pdf (updated pdf of the state after the analysis)

• 𝑝 𝒚 = marginal pdf of the observations (does not depend on 𝒙: normalising constant in Bayes’ law)

The Bayes perspective

𝑝 𝒙𝑏|𝒙

𝑝 𝒚|𝒙

𝑝 𝒙|𝒚





𝑝 𝒙|𝒚 𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙 (1)

• In principle an analysis update requires being able to compute the product pdf of the 

random variables 𝒚, 𝒙𝑏 . This is usually not possible to do unless we choose very 

specific functional forms for the pdfs

• We thus need to make approximations

• One idea is to use Monte Carlo methods to sample and propagate the pdfs in (1): 

Particle Filters 

• In Particle Filters pdfs are sampled by a collection of “particles” (i.e., model states) 

with assigned weights:

𝑝(𝒙)~σ𝑖=1,𝑁𝑤𝑖𝛿 𝒙 − 𝒙𝑖 (2)

• The pdf is propagated in time by integrating the different particles with the model:

𝑝 𝒙𝑏|𝒙 ~σ𝑖=1,𝑁𝑤𝑖𝛿 𝒙 −𝑀 𝒙𝑖 (3)

Particle Filters





• The pdf is propagated in time by integrating the different particles with the model:

𝑝 𝒙𝑏|𝒙 ~σ𝑖=1,𝑁𝑤𝑖𝛿 𝒙 −𝑀 𝒙𝑖 (3)

• In the analysis update the weights of the particles are updated according to the 

observations’ likelihood:

𝑤𝑖
𝑎 𝑤𝑖𝑝 𝒚|𝒙𝑖

• The ensemble of particles is usually resampled, i.e. high weight particles are 

duplicated and low-weight particles discarded

• The Particle Filter described here is one of the most basic implementation (Bootstrap 

Filter, Gordon et al., 1993)

Particle Filters


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• Particle Filters work well for very small state space sizes and observation sizes (N~10 

to 100)

• For larger state space and/or observation sizes the required number of particles 

increases exponentially (Snyder et al., 2015)

• A large body of current research is devoted to reduce the computational demands of 

particle filters for high dimensional systems

• One of the main themes of PF research is how to prevent the particles from diverging 

from the true state and becoming too unlikely

• The main idea is to also use observations (and not only the model) to “guide” the 

particles’ evolution from t=tn-1 to t=tn; many variants possible (Ades and van 

Leeuwen, 2014)

Particle Filters



• Regardless of the assimilation algorithm the number of particles (ensemble members) 

needed to resolve non-Gaussian pdfs is very high:

Particle Filters

Histograms of a 6 h 
ensemble forecast for 
specific humidity 
(g kg−1) for a 
intermediate AGCM.
Miyoshi et al., 2014



• Not making assumptions on the shape of the prior and the likelihood pdf makes the 

Bayesian problem difficult (i.e., analytically and computationally intractable)

• Usual choice is to assume a Gaussian distribution for the both the observations’ 

likelihood and the prior pdf

• Why Gaussian?

1. Mathematically tractable problem;

2. Full distribution characteristics defined by only its first two moments (mean 

and covariance);

3. Supported by the Central Limit Theorem;

4. Least committed distribution for given first and second moments (i.e., we are 

making the least amount of hypotheses on the shape of the pdf)

The Gaussian approximation



• Usual choice is to assume a Gaussian distribution for the both the observations’ 

likelihood and the prior pdf

• where 𝜀𝑜𝜀𝑜
𝑇 = 𝐑 and 𝜀𝑏𝜀𝑏

𝑇 = 𝐏𝑩 are the covariances of the errors of the 

observations and of the prior (background forecast)

• Under this assumption the posterior (analysis) distribution 𝑝(𝒙|𝒚) can also be 

expressed as a Gaussian distribution  

The Gaussian approximation

𝑝 𝒚|𝒙 =
𝟏

𝟐𝝅 𝑵/𝟐 𝐑 𝟏/𝟐
𝒆𝒙𝒑 −

𝟏

𝟐
𝒚 − 𝑯 𝒙

𝑻
𝐑 −𝟏 𝒙𝒃 −𝑯 𝒙

𝑝 𝒙𝑏|𝒙 =
𝟏

𝟐𝝅 𝑵/𝟐 𝐏𝑩 𝟏/𝟐
𝒆𝒙𝒑 −

𝟏

𝟐
𝒙𝒃 − 𝒙 𝑻 𝐏𝑩

−𝟏 𝒙𝒃 − 𝒙

𝑝 𝒙|𝒚 𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙 𝒆𝒙𝒑 −
𝟏

𝟐
𝒚 − 𝑯 𝒙

𝑻
𝐑 −𝟏 𝒚− 𝑯 𝒙 −

𝟏

𝟐
𝒙𝒃 − 𝒙 𝑻 𝐏𝑩

−𝟏 𝒙𝒃 − 𝒙 



• Once we know (at least in principle!) the form of the posterior distribution 𝑝(𝒙|𝒚) we 

have a choice:

1) Either we can solve for the mean and the covariance of the posterior distribution:

𝒙𝑎 = න𝒙𝑝 𝒙|𝒚 𝒅𝒙

𝐏𝑎 = න 𝒙 − 𝒙𝑎 𝒙 − 𝒙𝑎
𝑇 𝑝 𝒙|𝒚 𝒅𝒙

Methods based on this approach include Optimum Interpolation (O.I.), Kalman  

Filter, Ensemble Kalman Filter (EnKF). These will all be discussed this week. The 

analysis found through this approach is referred to as the minimum variance 

solution or the best linear unbiased estimate (BLUE).

Note: Kalman Filter based methods can be derived without making any 

assumptions about the Gaussianity of the errors. However only if all error 

distributions are Gaussian will the KF provide the exact posterior distribution (i.e. the 

Bayes posterior pdf). 

Kalman Filter methods



2) Alternatively we might choose to estimate the mode of the posterior distribution        

𝑝(𝒙|𝒚), i.e. find the analysis 𝒙𝑎 as the state that corresponds to the maximum of 

the posterior distribution (=> the most probable state):

𝒙𝑎 = argmax
𝒙

𝑝 𝒙|𝒚

This way of attacking the problem leads to the variational approach (3D-Var, 4D-

Var). They will be covered extensively in this week’s lectures. The solution found in 

this way is called the maximum a-posteriori probability state (MAP).   

In the variational framework the linear and Gaussian assumptions can be relaxed, 

i.e. the full nonlinear analysis problem can be decomposed into a series of  linear 

Gaussian problems (incremental 4D-Var, to be discussed later this week). 

However there is no guarantee of convergence!

Variational methods



• For a Gaussian pdf the mean and the mode of the distribution coincide:

• Thus if all the relevant statistics are Gaussian the minimum variance and maximum a-

posteriori solutions coincide

Kalman Filter vs Variational methods

mean=mode



• For non-Gaussian pdfs the mean and the mode of the distribution generally differ:

• In non-Gaussian assimilation problems the minimum variance and maximum 

likelihood solutions will differ

Kalman Filter vs Variational methods

mean≠mode

mode

mean



• Both Variational and Kalman Filter based analysis methods require estimates of the 

background state and its error covariances (𝑝 𝒙𝑏|𝒙 ~N 𝒙𝑏, 𝐏𝐵 )

• The background state is provided by an integration of the prognostic model started from the 

previous analysis:

𝒙𝑏
𝑡 =M 𝒙𝑎

𝑡−1

• The background (and analysis) error statistics are usually computed with Monte Carlo 

methods: an ensemble of states is used to estimate the errors statistics

• Each ensemble member is advanced using a perturbed version of the model:

𝒙𝑏,𝑖
𝑡 =M 𝒙𝑎,𝑖

𝑡−1 +𝛈𝑖 𝑖 = 1,2, … , N𝑒𝑛𝑠

• Each ensemble member is usually updated using perturbed observations (though there are 

methods that can avoid this):

𝒚𝑖 = 𝒚 + 𝜺𝑜,𝑖 𝑖 = 1,2, … , N𝑒𝑛𝑠

Hybrid DA methods



Hybrid DA methods
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• Data assimilation systems that have an ensemble data assimilation component used for the 

estimation of analysis and background errors are called hybrid data assimilation systems 

(Note: this definition is not universal!)

• We will discuss the various options for the ensemble data assimilation component in two 

dedicated lectures

• All major global NWP Centres run some form of hybrid data assimilation for atmospheric 

DA: a variational analysis cycle to estimate the mean/mode of the analysis pdf coupled with 

an ensemble data assimilation system to estimate the second moments of the distributions. 

• The ensemble DA component not only serves the purpose of estimating the background

errors used in the analysis update, but it also provides the initial state estimates for 

ensemble forecasting 

Hybrid DA methods



• Data assimilation in NWP aims to optimally blend information from observations and model 

to produce an accurate and physically consistent estimate of the initial state of the 

atmosphere and of the other components of the Earth System

• Both observations and models are affected by systematic and random errors: these need to 

be evaluated and taken into account in order to produce a statistically optimal analysis  

• The Bayesian approach provides a unified theoretical framework for data assimilation

• Particle Filters provide a Monte Carlo implementation of the Bayes’ Law in data 

assimilation. Asymptotically correct for 𝑁𝑒𝑛𝑠 → ∞, but not yet applicable to high dimensional 

systems

• A Gaussian assumption on the error statistics is usually made to make the problem 

tractable in realistic geophysical DA

• Kalman Filter type methods and Variational methods can both be derived from Bayes’ Law 

under these assumptions: they lead to the same solution for linear, Gaussian problems  

• Hybrid data assimilation methods currently used in global NWP combine a variational 

analysis system with an ensemble data assimilation component for error estimation

Summary
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