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Data Assimilation

Data Assimilation has two main goals:

– Optimally blend information from observations and model to 

produce an accurate and physically consistent estimate of the 

initial state of the atmosphere and of the other components of the 

Earth System

– Quantify the uncertainty of our estimate of the initial state (this is 

necessary to be able to initialise an ensemble forecast!)  
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The Data assimilation cycle

 An analysis is not produced by observations alone!

 The observations are used to correct errors in the short forecast from the 
previous analysis time (the background forecast).

 The background carries information from past observations into the current 
analysis 

 The analysis is constructed so as to respect the physical and dynamical 
balances of the model        the model is an integral part of the analysis 
algorithm



The observations



In situ observations

DRIBU

PILOT/Profilers

Aircraft

SYNOP/METAR/SHIP

Radiosonde balloons (TEMP)

Lars Isaksen’s talk



Satellite observations

Imagers: SSMI, SSMIS, AMSR-E, 

TMI

GPS radio occultations

Sounders: NOAA AMSU-A/B, HIRS, AIRS, IASI, MHS

Geostationary+MODIS: IR and AMVScatterometer ocean low-level winds: ASCAT

Tony McNally and Lars Isaksen talks



Observation errors

• Observations are affected by errors of different types

• Denoting y* as the true observations of the model state (𝐲∗ =H 𝐱∗ ):

𝐲 − 𝐲∗ = 𝜀𝑜 = 𝜀𝐺 + 𝜀𝑀 + 𝜀𝑅 + 𝜀𝐻

𝜀𝐺 =Gross errors (incorrect coding of observation, duplicates, incorrect 

location, wrong cloud clearing, etc.). 

𝜀𝑀 =Measurement errors (instrument noise)

𝜀𝑅 =Representativity errors (e.g., in situ observations compared to grid point 

model value)

𝜀𝐻 =Observation operator (Forward model) errors (e.g., errors in the radiative 

transfer model, interpolation errors, etc.)



Observation errors

𝐲 − 𝐲∗ = 𝜀𝑜 = 𝜀𝐺 + 𝜀𝑀 + 𝜀𝑅 + 𝜀𝐻

• 𝜀𝐺 (gross errors) are dealt with by Observation Quality Control techniques (Variational 

Quality Control; Elias Holm’s talk)

• Observations are assumed to be un-biased:

𝜀𝑜 = 0

• Biases are dealt with specific Bias Correction techniques: at ECMWF this is part of the 

analysis algorithm itself (e.g., Variational Bias Correction: Niels Bormann’s talk)



Observation errors

• In common DA algorithms we require not only the observations to be un-biased but 

also the background forecast to be un-biased:

𝜀𝑏 = 0

• But our only source of information about observation and forecast errors are 

observation departures:

𝑦 − 𝐻 𝑥𝑏

• We need to make further assumptions in order to disentangle observation and model 

error (Niels Bormann and Patrick Laloyaux’s talks)



Observation impact

• It is also important to monitor and evaluate the impact different types of observations 

have on the quality of the analyses and forecasts

• To do this we routinely look at observation departures (with respect to both analysis 

and forecast fields: see Lars Isaksen’s talk and practical sessions)

• We can also perform Observing System Experiments (OSEs: Cristina Lupu’s talk)

• We routinely compute adjoint-based diagnostic quantities (Forecast Sensitivity to 

Observation Impact: Cristina Lupu’s talk)

beneficial

Total FSOI impact Total data count



The forecast model



The forecast model is a very important part of 
the data assimilation system

Most important physical processes in the ECMWF model



The forecast model

• A good model is able to effectively propagate information from past observations to 

the current analysis update => new batch of observations will only produce small 

corrections to the background => we are closer to the conditions of linearity of errors  

where current DA algorithms work best

• In incremental 4D-Var we not only require the full non-linear model to advance the 

state in time

• We also need its linearised versions (Tangent Linear and Adjoint) to propagate 

increments with respect to a linearisation trajectory forward and backwards in time 
during the assimilation window (update of J and computation of 𝛻J)

• Developing and maintaining TL and ADJ codes is a complex task (Philippe Lopez and 

Angela Benedetti’s talks): but the availability of sophisticated TL and ADJ models is 

one of the main reasons for ECMWF success  



Model errors

• Despite their increasing complexity and sophistication models are far from perfect!

• Many sources of model error: missing physical processes, errors in parametrizations 

of physical processes, discretisation errors (from continuous PDEs to discrete 

formulation), etc., 

• We represent model errors in two ways: 

1. Stochastic errors: explicitly perturbing the model integration in our ensemble 

data assimilation system (EDA; see Massimo Bonavita’s talk – Assimilation 

Algorithms (5))

2. Model biases: Using an explicit model error term in the 4D-Var cost function 

(weak constraint 4D-Var: see Sebastien Massart talk on 4D-Var and Patrick 

Laloyaux’s talk on Model Error)

• A lot of work still needs to be done in this area, especially in terms of diagnosing the 

model error statistics



Blending observations and model 

information: the Bayes perspective
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• At an abstract level, we can think of the analysis process as updating our prior knowledge about the state, 

represented by a background forecast and the pdf of its errors, with new observations, represented by their values 

and the pdf of their errors: 

𝑝 𝒙|𝒚 =
𝑝 𝒚|𝒙 𝑝 𝒙

𝑝 𝒚
=

𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙

𝑝 𝒚
𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙

• 𝑝 𝒙𝑏|𝒙 = prior pdf (encapsulate our knowledge about the state before new observations)

• 𝑝 𝒚|𝒙 = observations likelihood (pdf of the observations conditioned on the state)

• 𝑝 𝒙|𝒚 = posterior pdf (updated pdf of the state after the analysis)

• 𝑝 𝒚 = marginal pdf of the observations (does not depend on 𝒙: normalising constant in Bayes’ law)

DA

The Bayes perspective

𝑝 𝒙𝑏|𝒙

𝑝 𝒚|𝒙

𝑝 𝒙|𝒚





𝑝 𝒙|𝒚 𝑝 𝒚|𝒙 𝑝 𝒙𝑏|𝒙 (1)

• In principle an analysis update requires being able to compute the product pdf of the 

random variables 𝒚, 𝒙𝑏 . This is usually not possible to do unless we choose very 

specific functional forms for the pdfs

• We thus need to make approximations

• One idea is to use Monte Carlo methods to sample and propagate the pdfs in (1) by 

an ensemble of states: Particle Filters

• This does not work (yet!) for high dimensional systems as in NWP

• Need to make further assumptions on (1)

Particle Filters





• Need to make further assumptions on (1)

• Gaussian error pdfs => Gaussian posterior pdf

𝑝 𝐱𝑎|𝒚 = N 𝐱𝑎 , 𝐏
𝑎

• Solving directly these equations lead to Kalman Filter type DA methods: Optimum 

Interpolation, Kalman Filter, Extended KF, Ensemble KF (Massimo Bonavita’s talk on 

KF and EnKF) 

• These methods work well with low dimensional systems or small number of 

observations (O.I. in Snow analysis; Extended KF for soil moisture analysis, e.g. 

Patricia De Rosnay’s talk on Land Data assimilation)

• For high-dim systems they require localisation which can limit the amount of 

information we are able to extract from non-local observations like satellite radiances 

Kalman Filter methods

𝒙𝒂 = 𝒙𝒃 + 𝐊(𝒚 − 𝐇 𝒙𝒃 )

𝐏𝑎 = 𝐈 − 𝐊𝐇 𝐏𝑏 𝐈 − 𝐊𝐇 𝑇 + 𝐊𝐑𝐊𝑻 = 𝐈 − 𝐊𝐇 𝐏𝑏

𝐊 = 𝐏𝑏𝐇𝑇 𝐇𝐏𝑏𝐇𝑇 + 𝐑
−1

= 𝐏𝑏
−1

+ 𝐇𝑇𝐑−1𝐇
−1

𝐇𝑇𝐑−1



• The Kalman Filter analysis update equation can be formulated as an equivalent 

minimization problem:

• This is the basis of Variational methods (3D-Var, 3D-Var FGAT, 4D-Var: see Sebastien 

Massart’s lectures)

• Solving the KF update through iterative algorithms (conjugate gradient, Newton’s 

methods) 

• These methods do not require direct access to the elements of the error covariance 

matrices. We can represent error covariances by operators (i.e., pieces of code) 

acting on increments (see Elias Holm talk on background error modelling)

• Variational methods work well on high dimensional systems and are generally used in 

global NWP 

Variational methods
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• The Kalman Filter equations require estimating and advancing in time not only the 

state but also its error covariance:

Pa
t = (I – KH)Pb

t (I – KH)T + KRKT

Pb
t+1 = M Pa

t MT + Qt+1

• 4D-Var can implicitly do this but only inside the assimilation window (12 hours at 

ECMWF)

• The idea of Hybrid DA methods is to combine a variational DA system to estimate the 

state with an ensemble data assimilation system (EnKF/EDA) to estimate and cycle 

the errors of the state (see Massimo Bonavita’s talk on Hybrid data assimilation)

• Ensemble DA systems also provide the initial conditions for Ensemble Prediction

• All major global NWP Centres run Hybrid DA systems for Atmospheric DA

Hybrid Data Assimilation methods



• We have discussed Data Assimilation methods with an emphasis on global 

Atmospheric NWP applications

• The DA methods presented are however general: which one to apply to a given 

problem depends on the characteristics of the problem (size of the state vector, 

number and quality of observations, available computing resources, available 

manpower,…)

• You have seen applications in Atmospheric Composition DA (4D-Var: Melanie Ades’s 

talk); in Ocean Data Assimilation (3D-Var FGAT: Hao Zuo’s talk); in Land Data 

Assimilation (O.I., Simplified Extended KF: Patricia de Rosnay’s talk) 

• In current ECMWF DA the Earth system’s components are at most only weakly 

coupled (through a coupled model background forecast)

• Phil Browne’s talk has given you a sense of some of the challenges and the potential 

benefits of a stronger coupling in the data assimilation for the different components of 

the Earth System

Earth System Data Assimilation



• We have discussed Data Assimilation methods for the Earth System with an emphasis 

on producing the best initial state estimate for forecasting at short, extended and even 

seasonal timescales

• An increasingly important application of Earth System DA is to help to reconstruct the 

past climate and weather (see Dinand Scheper’s talk on Reanalysis methods) 

• As DA methods have dramatically improved over the years we are able to make better 

use of past observational records and more robustly estimate climatic trends 

Earth System Data Assimilation



• We have tried to provide you with a description of the state of the art in data 

assimilation methods for Earth System applications

• More advanced material about current topics and challenges: 

https://www.ecmwf.int/en/learning/workshops/annual-seminar-2018

Earth System DA: Challenges

ECMWF Seminar 2018
On Earth System Assimilation

Reading, 10-13 September 2018



Thank you for being such an 

attentive audience!



Thank you for being such an 

attentive audience!

Bayesian brain teaser

“Your favourite anti-spam software has 98% accuracy in discovering spam 
emails. On average 1% of the email we receive are spam.
If an email you have received is labelled as spam, is it more likely to actually 
be spam or not?”

Answers to Massimo.Bonavita@ecmwf.int (No spam please!)

mailto:Massimo.Bonavita@ecmwf.int

