Observational bias correction in data assimilation

Niels Bormann, with material from Hans Hersbach and Dick Dee

Meteorological Training Course
Data Assimilation

13 March 2019

Overview of this lecture

In this lecture we look at *observational biases*, and the variational bias correction scheme (VarBC) as used at ECMWF is explained.

VarBC replaced the tedious job of estimating observation bias **off-line** for each satellite instrument or in-situ network **with an automatic** self-adaptive **system**.

This is achieved by making the bias estimation an *integral part* of the ECMWF variational data *assimilation* system, where now both the initial model state and observation bias estimates are updated simultaneously.

By the end of the session you should be able to realize that:

- 1. Many observations are biased, and the *characteristics of bias vary widely* depending on the type of instrument,
- 2. Distinguishing model bias from observation bias is often difficult,
- 3. The success of an adaptive system implicitly relies on a *redundancy* in the underlying observing system.

Everyone knows that models are biased.

Not everyone knows that most observations are biased as well.

So... where is the bias term in this equation?

$$J(x) = (x_b - x)^T B^{-1} (x_b - x) + [y - h(x)]^T R^{-1} [y - h(x)]$$

$$\text{model background constraint} \quad \text{observational constraint}$$

Bias: mean(y-h(x)) (can be situation-dependent)

Outline

- Introduction
 - Biases in models, observations, and observation operators
 - Implications for data assimilation
- Variational analysis and correction of observation bias
 - The need for an adaptive system
 - Variational bias correction (VarBC)
- Limitations of VarBC

Model bias:

Seasonal variation in upper-stratospheric model errors

T255L60 model used for the *ERA-Interim* reanalysis

Observation bias: Radiosonde temperature observations

Daytime warm bias due to radiative heating of the temperature sensor (depends on solar elevation and equipment type)

Bias changes due to change of equipment

Observation and observation operator bias: Satellite radiances

Monitoring the background departures (averaged in time and/or space):

Diurnal bias variation in a geostationary satellite

Bias depending on scan position

Air-mass dependent bias (AMSU-A ch 8)

Observation and observation operator bias: Satellite radiances – sources of bias

Monitoring the background departures (averaged in time and/or space):

NOAA-14 channel 5 has an instrument bias.

Observation and observation operator bias: Satellite radiances – sources of bias

A time-varying bias, apparently dependent on the temperature of the satellite instrument:

Observation and observation operator bias: Satellite radiances – sources of bias

Different spectroscopy in the *radiative transfer model* can lead to different bias, e.g. for HIRS:

Other common causes for biases in radiative transfer:

- Bias in assumed concentrations of atmospheric gases (e.g., CO₂, aerosols)
- Neglected effects (e.g., clouds)
- Incorrect spectral response function
-

Implications for data assimilation: Bias problems in a nutshell

- Observations and observation operators have biases, which may change over time
 - Daytime warm bias in radiosonde measurements of stratospheric temperature;
 radiosonde equipment changes
 - Biases in satellite radiance measurements and radiative transfer models
 - Biases in cloud-drift wind data due to problems in height assignment
- Models have biases, and changes in observational coverage over time may change the extent to which observations correct these biases
 - Stratospheric temperature bias modulated by radiance assimilation
 - This is especially important for reanalysis (trend analysis)
- Data assimilation methods are primarily designed to correct small random errors in the model background
 - Systematic inconsistencies among different parts of the observing system lead to all kinds of problems

Implications for data assimilation: The effect of model bias on trend estimates

Most assimilation systems assume unbiased models and unbiased data

Biases in models and/or data can induce spurious trends in the assimilation

Implications for data assimilation: ERA-40 surface temperatures compared to land-station values

Surface air temperature anomaly (°C) with respect to 1987-2001

Based on monthly CRUTEM2v data (Jones and Moberg, 2003)

Based on ERA-40 reanalysis

Outline

- Introduction
 - Biases in models, observations, and observation operators
 - Implications for data assimilation
- Variational analysis and correction of observation bias
 - The need for an adaptive system
 - The variational bias correction scheme: VarBC
- Limitations of VarBC

Variational analysis and bias correction: A brief review of variational data assimilation

- The input x_b represents past information propagated by the forecast model (the model background)
- The input [y h(x_b)] represents the new information entering the system (the background departures)
- The function h(x) represents a model for simulating observations (the observation operator)
- Minimising the cost function J(x) produces an adjustment to the model background based on all used observations

(the analysis)

Variational analysis and bias correction: Error sources in the input data

Minimise
$$J(x) = (x_b - x)^T B^{-1} (x_b - x) + [y - h(x)]^T R^{-1} [y - h(x)]$$
background constraint (J_b) observational constraint (J_o)

- Errors in the input [y h(x_b)] arise from:
 - errors in the actual observations
 - errors in the model background
 - errors in the observation operator
- There is no general method for separating these different error sources
 - we only have information about differences
 - there is no true reference in the real world!
- The analysis does not respond well to conflicting input information

A lot of work is done to remove biases prior to assimilation:

- ideally by removing the cause
- in practise by careful comparison against other data

The need for an adequate bias model

Prerequisite for any bias correction is a good model for the bias $(b(x,\beta))$:

- Ideally, guided by the physical origins of the bias.
- In practice, bias models are derived empirically from observation monitoring.

The need for an adequate bias model

Prerequisite for any bias correction is a good model for the bias $(b(x,\beta))$:

- For instance, a linear model with some predictors p_1 , p_2 , ... p_n , and free parameters β_0 , β_1 , β_2 , ... β_n : $b(\mathbf{x}, \boldsymbol{\beta}) = \beta_0 + \beta_1 p_1 + \beta_2 p_2 + ... + \beta_n p_n$
- Avoid models with too many free parameters.

Satellite radiance bias correction at ECMWF, prior to 2006

Scan bias and air-mass dependent bias for each satellite/sensor/channel were estimated off-line from background departures, and stored in files (Harris and Kelly 2001)

Error model for brightness temperature data: $y = h(x) + b^{scan} + b^{air}(x) + e^{obs}$

$$y = h(x) + b^{scan} + b^{air}(x) + e^{obx}$$

where
$$b^{scan} = b^{scan}$$
 (latitude, scan position)

$$b^{air} = \beta_0 + \sum_{i=1}^N \beta_i (p_i(x))$$

 e^{obs} = random observation error

Predictors, for instance:

- 1000-300 hPa thickness
- 200-50 hPa thickness
- · surface skin temperature
- · total precipitable water

Average the background departures:

$$\langle y - h(x_b) \rangle = b^{scan} + b^{air}(x)$$

Periodically estimate scan bias and predictor coefficients:

- typically 2 weeks of background departures
- 2-step regression procedure
- careful masking and data selection

The need for an adaptive bias correction system

- The observing system is increasingly complex and constantly changing
- It is dominated by satellite radiance data:
 - biases are flow-dependent, and may change with time
 - they are different for different sensors
 - they are different for different channels

Cryosat

Sentinel 5pSentinel 3

Sentinel 1GOSATADM AeolusEarthCARE

SMOS

GOES Rad

GMS/MTSAT Rad

■ METEOSAT Rad
■ AVHRR AMV

- How can we manage the bias corrections for all these different components?
- This requires a consistent approach and a flexible, automated system

The Variational Bias Correction scheme: The general idea

The bias in a given instrument/channel (bias group) is described by (a few) bias parameters: typically, these are functions of air-mass and scan-position (the **predictors**)

These parameters can be estimated in a variational analysis along with the model state (Derber and Wu, 1998 at NCEP, USA)

The **standard variational analysis** minimizes

$$J(x) = (x_b - x)^T B_x^{-1} (x_b - x) + [y - h(x)]^T R^{-1} [y - h(x)]$$

Include the bias parameters in the control vector: $z^T = \int x^T \ \beta^T I$

Minimize instead

$$J(z) = (z_b - z)^T B_z^{-1} (z_b - z) + [y - \widetilde{h}(z)]^T R^{-1} [y - \widetilde{h}(z)]$$

What is needed to implement this:

- The modified operator $h(x, \beta)$ and its TL + adjoint
- A cycling scheme for updating the bias parameter estimates
- 3. An effective preconditioner for the joint minimization problem

Variational bias correction: The modified analysis problem

The original problem:

$$J(\mathbf{x}) = (\mathbf{x}_{b} - \mathbf{x})^{T} \mathbf{B}^{-1} (\mathbf{x}_{b} - \mathbf{x}) + [\mathbf{y} - \mathbf{h}(\mathbf{x})]^{T} \mathbf{R}^{-1} [\mathbf{y} - \mathbf{h}(\mathbf{x})]$$

$$J_{o}: observation constraint$$

The modified problem:

A model for the observation bias

Example 1: Spinning up new instruments – IASI on MetOp A

- IASI is a high-resolution interferometer with 8461 channels
- Initially unstable data gaps, preprocessing changes

Example 2: NOAA-9 MSU channel 3 bias corrections (cosmic storm)

Example 3: Fit to conventional data

Bias correction use at ECMWF

Current VarBC bias 'classes' in the ECMWF operational system:

- Radiances
- Ozone
- Aircraft data
- Ground-based radar precipitation

Other automated bias corrections, but outside 4D-Var:

- Surface pressure
- Radiosonde temperature and humidity
- Soil moisture (in SEKF surface analysis)

Outline

- Introduction
 - Biases in models, observations, and observation operators
 - Implications for data assimilation
- Variational analysis and correction of observation bias
 - The need for an adaptive system
 - Variational bias correction (VarBC)
- Limitations of VarBC

Limitations of VarBC: Interaction with model bias

VarBC introduces extra degrees of freedom in the variational analysis, to help improve the fit to the (bias-corrected) observations:

$$\mathbf{J}(\mathbf{x},\boldsymbol{\beta}) = (\mathbf{x}_{b} - \mathbf{x})^{\mathrm{T}} \mathbf{B}_{\mathbf{x}}^{-1} (\mathbf{x}_{b} - \mathbf{x}) + (\boldsymbol{\beta}_{b} - \boldsymbol{\beta})^{\mathrm{T}} \mathbf{B}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta}_{b} - \boldsymbol{\beta})$$
$$+ \left[\mathbf{y} - \mathbf{b}(\mathbf{x}, \boldsymbol{\beta}) - \mathbf{h}(\mathbf{x}) \right]^{\mathrm{T}} \mathbf{R}^{-1} \left[\mathbf{y} - \mathbf{b}(\mathbf{x}, \boldsymbol{\beta}) - \mathbf{h}(\mathbf{x}) \right]$$

It works well (even if the model is biased) when the analysis is strongly constrained by observations:

It does not work as well when there are large model biases and observation biases are poorly constrained (e.g., few anchoring observations; many bias-corrected observations with similar characteristics):

VarBC is not designed to correct model biases: Need for a weak-constraint 4D-Var (Laloyaux)

OBS-FG OBS-AN OBS-FG(bcor) OBS-AN(bcor)

Interaction with model bias and the role of anchor observations

Example: Stratospheric temperature biases

- Model biases affect the bias correction in the absence of sufficient anchor observations.
- GPS-RO provides a good anchor from mid-2006.
- The solution of the bias correction is also affected by other aspects, including the background error covariance.

Increased availability of GPS-RO data

Interaction with model bias: selecting an anchor

Example: Upper stratospheric temperature biases

- Unrealistic drift in the bias corrections due to model bias (red line)
- Additional anchoring can be imposed through assimilating AMSU-A channel 14 without a bias correction (blue line)
- Other anchoring in the ECMWF system: selected ozone-sensitive IR channels

Interaction with model bias: alternative to anchor observations

- Alternative concept to reduce that VarBC corrects model bias:
 - Constrained VarBC (Han and Bormann 2016):
 - Penalise large bias corrections through an additional term in the cost function.

$$J(\mathbf{x}, \boldsymbol{\beta}) = \frac{1}{2} (\mathbf{x}_b - \mathbf{x})^T \mathbf{B}_x^{-1} (\mathbf{x}_b - \mathbf{x})$$

$$+ \frac{1}{2} (\boldsymbol{\beta} - \boldsymbol{\beta}_b)^T \mathbf{B}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_b)$$

$$+ \frac{1}{2} [\mathbf{y} - H(\mathbf{x}) - b(\mathbf{x}, \boldsymbol{\beta})]^T \mathbf{R}^{-1} [\mathbf{y} - H(\mathbf{x}) - b(\mathbf{x}, \boldsymbol{\beta})]$$

$$+ \frac{1}{2} [b(\mathbf{x}, \boldsymbol{\beta}) - \mathbf{b}_0]^T \mathbf{R}_b^{-1} [b(\mathbf{x}, \boldsymbol{\beta}) - \mathbf{b}_0]$$

- **b** : Priori estimate of observation bias
- \mathbf{R} : Priori estimate (or on orbit estimation) of radiometric uncertainty
- β : Background predictor coefficients
- $f{B}$: Background predictor coefficients uncertainty Adaptive

Interaction with model bias: alternative constraints

Example: Upper stratospheric temperature biases

- Constrained VarBC is now used operationally for AMSU-A ch 14 and ATMS ch 15
 - Different bias characteristics for different satellites are now corrected. They were previously ignored when these channels were assimilated without bias correction.

 Further constraints could be introduced by using a more restrictive bias model (e.g., no air-mass component in bias model)

Limitations of VarBC: Other pit-falls: Removing the signal

- Avoid bias correction models with too many predictors, to avoid correcting for situation-dependent background errors/biases to be incorrectly removed.
- Beware of interaction between VarBC and departure-based quality control and asymmetric distributions:
 - Can lead to unwanted drifts in the population after QC

Summary

Biases are everywhere:

- Most observations cannot be usefully assimilated without bias adjustments
- Manual estimation of biases in satellite data is practically impossible
- Bias estimates can be updated automatically during data assimilation
- Variational bias correction works best in situations where:
 - there is sufficient redundancy in the data; or
 - there are no large model biases

Challenges:

- How to develop good bias models for observations
- How to separate observation bias from model bias

Additional information

Harris and Kelly, 2001: A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc., 127, 1453-1468

Derber and Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287-2299

Dee, 2004: Variational bias correction of radiance data in the ECMWF system. Pp. 97-112 in Proceedings of the ECMWF workshop on assimilation of high spectral resolution sounders in NWP, 28 June-1 July 2004, Reading, UK

Dee, 2005: Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323-3343

Dee and Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc., 135, 1830-1841

Han and Bormann, 2016: Constrained adaptive bias correction for satellite radiance assimilation in the ECMWF 4D-Var system. ECMWF Technical Memorandum 783.

Feel free to contact me with questions:

Niels.Bormann@ecmwf.int