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Outline

• A variational implementation of the EnKF: the EDA

• Hybrid Data Assimilation: Motivation

• Hybrid Data Assimilation systems in global NWP
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The Ensemble of Data Assimilations (EDA)

• In the previous lecture on Ensemble Kalman Filters we have seen that EnKF are 

commonly used in hybrid DA systems for estimating and cycling error covariance 

information used by the variational analysis and initialise ensemble prediction 

systems

• Ensemble sizes of O(100-200) are commonly used. To save on computational 

expense the EnKF ensemble is run at a reduced spatial resolution (typically half) 

with respect to the deterministic variational analysis cycle 
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The Ensemble of Data Assimilations (EDA)

• In the previous lecture on Ensemble Kalman Filters we have seen that EnKF are 

commonly used in hybrid DA systems for estimating and cycling error covariance 

information used by the variational analysis and initialise ensemble prediction 

systems

• Ensemble sizes of O(100-200) are commonly used. To save on computational 

expense the EnKF ensemble is run at a reduced spatial resolution with respect to 

the deterministic variational analysis cycle 

• Can we replicate the error cycling job done by the EnKF using only 4D-Var?



The Ensemble of Data Assimilations (EDA)

• Can we replicate the error cycling job done by the EnKF using only 4D-Var?

• Yes, by applying the same error simulation concepts used for the stochastic 

(perturbed observations) EnKF

• Ensemble of Data Assimilations (EDA; Isaksen et al., 2010)



The Ensemble of Data Assimilations (EDA)

• For a linear system (linear model M, linear observation operator H) the data 
assimilation update can be written as:

(1)

• Assuming background (Pb), observation (R) and model errors (Q) to be statistically 
independent, the evolution of the system error covariances is given by:

(2)

• Consider now the evolution of this system if we perturb the observations and the 
forecast model with random, zero mean noise drawn from the respective error 
covariances:

(3)

where ζ~N(0,R), η~N(0,Q).
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The Ensemble of Data Assimilations (EDA)

• If we define the differences between the perturbed and unperturbed state                     

their evolution is obtained by subtracting the unperturbed state evolution equations 

from the perturbed ones, i.e. (3)-(1):

(4)

• We see that the perturbations evolve with similar updates as the control: what about 

their error statistics?
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The Ensemble of Data Assimilations (EDA)

• We can see that the perturbations from a DA system run with perturbed 
observations and model error evolve with the same update equations as the errors 
of the unperturbed DA cycle:

• For this to work, however, we require to draw perturbations from the correct error 

covariance matrices R (observation errors) and Q (model errors), which are 

themselves subject to non-negligible uncertainties!
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The Ensemble of Data Assimilations (EDA)

• What does all this mean in practice?

1. We can use an ensemble of perturbed data assimilation cycles to simulate 
the errors of our reference DA cycle;

2. The ensemble of perturbed DAs should be as similar as possible to the 
reference DA (i.e., same or similar K matrix, M, H, and resolution)

3. The applied perturbations ζ ,η should be drawn from the correct error 
covariances (R, Q);

4. There is no need to explicitly perturb the background forecast xb, if the 
perturbations are drawn from the correct error covariances (R, Q);

5. This is a Monte Carlo method: the expectation operator used in (5) implies 
that results strictly hold for infinite ensemble sizes. In practice non-
negligible sampling errors are to be expected



The Ensemble of Data Assimilations (EDA)

• What does all this mean in practice?

1. 25 (50 from Q3 2019) ensemble members using 4D-Var assimilations at 
reduced resolution

2. TCo639 outer loop, TL191/TL191 inner loops. (HRES DA: TCo1279 outer 
loop, TL255/TL319/TL399 inner loops). 

3. Observations randomly perturbed according to their estimated error 
covariances (R)

4. SST perturbed with climatological error structures (sub-optimal!)

5. Model error (Q) represented by stochastic perturbations during the 
background forecast integration (SPPT, Leutbecher, 2009)



The Ensemble of Data Assimilations (EDA)
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The Ensemble of Data Assimilations (EDA)

• The EDA simulates the error evolution of the 4DVar analysis cycle. As such it has 
two main applications:

1. Provide an ensemble of initial conditions to initialize the ensemble 
prediction system

2. Provide a flow-dependent estimate of background error covariances for 
use in the 4D-Var assimilation (both for the HRES DA system and the EDA 
members themselves)



The Ensemble of Data Assimilations (EDA)



The Ensemble of Data Assimilations (EDA)

• The EDA is the system used at ECMWF to simulate the error evolution of the 4DVar 
analysis cycle.

• It is conceptually similar and it is based on the same assumptions of the Perturbed 
Observations (Stochastic) EnKF.

• There are advantages for ECMWF to using an ensemble of 4DVar to simulate the 
error of a reference high resolution 4DVar:

1. The two systems are more similar to one another in terms of Kalman Gain 
than an EnKF and a 4DVar; error estimates should thus be more accurate

2. There are technical and maintenance synergies 

• There are also some disadvantages. In particular running an ensemble of 4DVar is 
considerably more expensive than running an EnKF. Current efforts are aimed at 
reducing the computational costs of the EDA in order to make a larger ensemble 
computationally affordable



Hybrid Data Assimilation

•



Hybrid Data Assimilation: Motivation

If we neglect model error (perfect model assumption) the problem of finding the 

model trajectory that best fits the observations over an assimilation interval 

(t=0,1,…,T) given a background state xb and its error covariance Pb can be solved by 

finding the minimum of the 4D-Var cost function: 

The 4D-Var solution is equivalent, for the same xb, Pb, and linear H, M, to the Kalman 

Filter solution at the end of the assimilation window (t=T) (Fisher et al, 2005).
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Hybrid Data Assimilation: Motivation

The 4D-Var solution implicitly evolves the initial background error covariances over

the length of the assimilation window (Thepaut et al.,1996) with the tangent linear

dynamics:

Pb(t) ≈ MPb(t=0)MT

This effect can be seen most easily looking at the evolution of the analysis increment 
for a single observation during an assimilation window:

𝐱𝑎 𝑡 − 𝐱𝑏 𝑡 ≅ 𝐌𝐏𝑏 𝑡 = 0 𝐌𝑇𝐇𝑇 𝑦 − 𝐻 𝐱𝑏 / 𝜎𝑏
2 + 𝜎𝑜
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MSLP (solid lines)

500 hPa Z (shaded) 

background forecast 

Temperature analysis increments for a single temperature observation at the 

start of the assimilation window

t=0h t=3h t=9h



Hybrid Data Assimilation: Motivation

The 4D-Var solution implicitly evolves the initial background error covariances over

the length of the assimilation window (Thepaut et al.,1996) with the tangent linear

dynamics:

Pb(t) ≈ MPb(t=0)MT

but it does not propagate error information from one assimilation cycle to the next.         
Pb is not evolved according to Kalman Filter equations ( i.e., Pb = MPaMT + Q) but is reset 
to a climatological, stationary estimate at the beginning of each assimilation window.

In standard 4D-Var only information about the state (xb) is propagated from one cycle 
to the next. 



Hybrid Data Assimilation: Motivation

Hybrid Data Assimilation: Use an EnKF/EDA system to produce flow-dependent error 

covariance information to be used in the high resolution Variational analysis

The hybrid approach would have the benefit of:

1) Integrate flow-dependent state error covariance information into the variational 
analysis

2) Keep the full rank representation of Pb and its implicit evolution inside the 
assimilation window

3) More robust than pure EnKF for limited ensemble sizes and large model errors

4) Allow for flow-dependent quality control of observations



Hybrid Data Assimilation: Applications

The next question to address is: how do we integrate the flow-dependent error 

covariance information from the EnKF/EDA systems into the variational analysis?

1. Extended control variable method (Met Office)

2. 4D-Ensemble-Var (NCEP, CMC, DWD)

3. Hybrid EDA 4D-Var (ECMWF, Météo France)



Hybrid Data Assimilation: Applications

Extended (alpha) control variable (Lorenc, 2003)

Conceptually it adds a flow-dependent term to the background error model:

Pb
clim is the static, climatological background error covariance

Pens ○ Cloc is the localised ensemble sample covariance

In practice this hybrid covariance model is done through augmentation of the control 
variable (more on this in the B modelling lecture later today!):

and introducing an additional term in the 4D-Var cost function:
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Hybrid Data Assimilation: Applications

Extended (alpha) control variable

• The analysis increment is now a weighted sum of  a component from the static, 
climatological Pb

clim and a component from the flow-dependent, ensemble based 
Pb

ens

• The flow-dependent increment is a linear combination of ensemble background 
perturbations X’, modulated by the α fields of coefficients

• If the α fields were homogeneous δxens could only span Nens-1 degrees of freedom; 
instead α are spatially varying fields, which effectively increases the available 
degrees of freedom since at different grid points the increment will be a different 
linear combination of ensemble perturbations

• Cloc is a covariance (localization) model for the flow-dependent increments: it 
controls the spatial variation of α
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Hybrid Data Assimilation: Applications
Extended (alpha) control variable

Pure ensemble 3D-Var  

50/50 hybrid 3D-Var  
from A.Clayton (UKMO)



Hybrid Data Assimilation: Applications

4D-Ensemble-Var (Liu et al., 2008)

• In the extended control variable method one uses the ensemble perturbations to 
estimate Pb only at the start of the 4D-Var assimilation window: the evolution of Pb

inside the window is done by the tangent linear dynamics (Pb(t) ≈ MPbMT) 

• In 4D-En-Var Pb is sampled from ensemble trajectories throughout the assimilation 
window: 

from D. Barker (UKMO)



Hybrid Data Assimilation: Applications

4D-Ensemble-Var (Liu et al., 2008)

• The 4D-Ens-Var analysis increment is thus a localised linear combination of 
ensemble trajectories’ perturbations: 

• This is fundamentally the same state update procedure of the LETKF version of 
EnKF (Hunt et al., 2007)

• While traditional 4D-Var  requires repeated, sequential runs of M, MT, ensemble 
trajectories from the previous assimilation time can be pre-computed in parallel

• However these ensemble trajectories need to be stored and read-in: we are 
trading computational cost for I/O cost

• As in the EnKF, 4D-Ens-Var does not require developing and maintaining the TL 
and Adjoint models, which makes it very popular! 
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Hybrid Data Assimilation: Applications

Hybrid EDA 4D-Var (Isaksen et al., 2010; Bonavita et al., 2012, 2015)

• In Hybrid 4D-Var we use the perturbations from the EDA background forecasts to 
update the background error covariance model used in 4D-Var

• The ensemble perturbations are not used directly to construct the analysis 
increments, but to update the Pb(t=0) used in 4D-Var



Hybrid Data Assimilation: Applications

EDA background perturbations 
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Hybrid Data Assimilation: Applications

How does the background error model update works?

• In variational DA, the background error covariance matrix B is usually defined 
implicitly in terms of a transformation from an increment defined in terms of 
model variables (x-xb) to one defined in terms of a control variable χ:

(x-xb) = Lχ

so that the implied B=LLT.

• In the current ECMWF wavelet formulation (Fisher, 2003), the variable transform 
can be written as:

1. K is the balance operator, i.e. the operator that links the control variables to the 
model variables 

2. Σb is the grid point variance of background errors

3. Cj(λ,φ) is the vertical correlation matrix for wavelet index j

4. The wavelet transform is defined by the set of basis functions ψj
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Hybrid Data Assimilation: Applications

How does the background error model update works?

• In standard 4D-Var the background error variances (Σb) and the background error 

correlations (Cj(λ,φ)) are computed offline from a climatology of EDA background 

perturbations.

• In Hybrid EDA 4D-Var these quantities are updated using the latest set of EDA 

background perturbations

• In this way the B model is continuously updated and is able to represent the 

“errors of the day” 



Hybrid Data Assimilation: Applications

How does the background error model update works?
500 hPa Vorticity errors

estimated from climat. B

500 hPa Vorticity errors

estimated from online B



Hybrid Data Assimilation: Applications

• Inside 4D-Var EDA derived background error estimates change the shape and size 
of analysis increments

Tropical Cyclone Aere, Philippines 8-9 May 2011.



Hybrid Data Assimilation: Applications

• Inside 4D-Var EDA derived background error estimates change the shape and size 
of analysis increments

Significant operational analysis error, corrected by 4DVar with EDA variances 

4DVar with Static errors                                   4DVar with EDA errors



Hybrid Data Assimilation: Applications

Static errors           EDA errors         

Static SP ana incr.          EDA SP ana incr.         



Hybrid Data Assimilation: Applications

• The online update of B involves not only the background error variances (Σb) but 
also the background error correlations (Cj(λ,φ)) 

EDA derived background error 

variance for Surface pressure
Hurricane Fanele, 20 January 2009

hPa



Hybrid Data Assimilation: Applications

• The online update of B involves not only the background error variances (Σb) but 
also the background error correlations (Cj(λ,φ)) 

EDA derived background error 

correlation length scale for surface 

pressure

Hurricane Fanele, 20 January 2009

Km



Wavelet B Computation



Vertical bg error correlation for Vorticity,
~850hPa August 2012

Jan 2012

Feb 2012



• The EDA is a variational implementation of the Perturbed Observations (Stochastic) 
EnKF. 

• It is used at ECMWF to estimate the state error covariances in order to a) initialise the 
ensemble prediction system and b) to provide estimates of the background error 
covariances for 4D-Var analysis

• Advantages: closer to reference 4D-Var, simpler to maintain and update

• Disadvantages: computational cost

• Hybrid DA: 3/4D-Var in combination with EnKF/EDA for error estimation and cycling

• Superior results than stand-alone 4D-Var or EnKF

• Various flavours of Hybrid DA possible: a) with direct use of ensemble perturbations 
(extended control variable, 4D-Ens-Var); b) updating a B model (hybrid EDA 4D-Var)

• Common issue: limited affordable ensemble size introduces sampling problems. 
Different techniques to tackle them (localisations, spatial averaging, time averaging, 
etc.).

• Estimates of Pa/b only as good as our knowledge of R, Q => improvements in error 
modelling improve forecasts

Summary
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