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Parametrizations in Data Assimilation

• Introduction

• An example of physical initialization

• A very simple variational assimilation problem

• 3D-Var assimilation

• The concept of adjoint

• 4D-Var assimilation

• Tangent-linear and adjoint coding

• Issues related to physical parametrizations in assimilation

• Physical parametrizations in ECMWF’s current 4D-Var system

• Examples of applications involving linearized physical parametrizations

• Summary and conclusions
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Why do we need data assimilation?

• Physical parametrizations used in NWP models are constantly being 

improved:

 more and more prognostic variables (cloud variables, precipitation, aerosols),

 more and more processes accounted for (e.g. detailed microphysics).

• However, they remain approximate representations of the true atmospheric 

behaviour.

• Another way to improve forecasts is to improve the initial state.

• The goal of data assimilation is to periodically constrain the initial conditions 

of the forecast using a set of accurate observations that provide our best  

estimate of the local true atmospheric state.

• By construction, numerical weather forecasts are imperfect:

 discrete representation of the atmosphere in space and time (horizontal and

vertical grids, spectral truncation, time step)

 subgrid-scale processes (e.g. turbulence, convective activity) need to be

parametrized as functions of the resolved-scale variables.

 errors in the initial conditions.



General features of data assimilation

▪ Goal: to produce an accurate three-dimensional representation of the

atmospheric state to initialize numerical weather prediction models.

▪ This is achieved by combining in an optimal statistical way all the information 

on the atmosphere, available over a selected time window (usually 6 or 12h):

✓ Observations with their accuracies (error statistics),

✓ Short-range model forecast (background) with associated error

statistics,

✓ Atmospheric equilibria (e.g. geostrophic balance),

✓ Physical laws (e.g. perfect gas law, condensation, microphysics,…)

▪ The optimal atmospheric state found is called the analysis.



Which observations are assimilated?

Operationally assimilated since many years ago:

* Surface measurements (SYNOP, SHIPS, DRIBU,…),

* Vertical soundings (TEMP, PILOT, AIREP, wind profilers,…),

* Geostationary satellites (METEOSAT, GOES,…)

Polar orbiting satellites (NOAA, SSM/I, AIRS, AQUA, QuikSCAT,…):  

- radiances (infrared & passive microwave in clear-sky conditions),

- products (motion vectors, total column water vapour, ozone,…).

More recently:

* Satellite radiances/retrievals in cloudy and rainy regions (SSM/I, TMI,…),

* Precipitation measurements from ground-based radars and rain gauges.

Still experimental:

* Satellite cloud/precipitation radar reflectivities/products (TRMM, CloudSat),

* Lidar backscattering/products (wind vectors, water vapour) (CALIPSO),

* GPS water vapour retrievals, 

* Satellite measurements of aerosols, trace gases,....

* Lightning data (TRMM-LIS, and soon GOES-R, FY-4A and MTG-LI).



Why physical parametrizations in data assimilation?

▪ In current operational systems, most used observations are directly or indirectly

related to temperature, wind, surface pressure and humidity outside cloudy

and precipitation areas (~ 20 million observations assimilated in ECMWF 4D-Var

every 12 hours).

▪ Physical parametrizations are used during the assimilation to link the

model’s prognostic variables (typically: T, u, v, qv and Ps) to more “exotic”

observed quantities (e.g. precipitation rates, radiances, radar reflectivities,…).

▪ Observations related to clouds and precipitation are starting to be routinely

assimilated,

 but how to convert such information into proper corrections of the model’s initial

state (prognostic variables T, u, v, qv and Ps) is not so straightforward.

For instance, problems in the assimilation can arise from the discontinuous or

non-linear nature of moist processes.



Improvements are still needed… 

▪ More observations are needed to improve the analysis and forecast of:

▪ Mesoscale phenomena (convection, frontal regions),

▪ Vertical and horizontal distribution of clouds and precipitation,

▪ Planetary boundary layer processes (stratocumulus/cumulus clouds),

▪ Surface processes (soil moisture, snow on the ground, sea ice),

▪ The tropical circulation (monsoons, squall lines, tropical cyclones).

▪ Recent developments and improvements have been achieved in:

▪ Data assimilation techniques (OI  3D-Var  4D-Var  Ensemble DA),

▪ Physical parametrizations in NWP models (prognostic schemes,

detailed convection and large-scale condensation processes),

▪ Radiative transfer models (infrared and microwave frequencies),

▪ Horizontal and vertical resolutions of NWP models (currently at 

ECMWF: 9 km globally, 137 levels),



Observations

with errors

a priori information from model 

= background state with errors

Data assimilation system 

(e.g. 4D-Var)

Analysis

Forecast

NWP model

Physical parametrizations are needed in data assimilation:

- to link the model variables to the observed quantities,

- to evolve the model state in time during the assimilation (e.g. 4D-Var).

To summarize…



Empirical initialization

Example from Ducrocq et al. (2000), Météo-France:

- Using the mesoscale research model Méso-NH (prognostic clouds and precipitation).

- Particular focus on strong convective events.

- Method: Before running the forecast:

1) A mesoscale surface analysis is performed (esp. to identify convective cold pools)

2) the model humidity, cloud and precipitation fields are empirically adjusted to match

ground-based precipitation radar observations and METEOSAT infrared brightness

temperatures.

Radar

METEOSAT



Ducrocq et al. (2004)

2.5-km resolution 

model Méso-NH

Flash flood over

South of France 

(8-9 Sept 2002)

+Nîmes

+Nîmes

12h FC from operational analysis

+

Rain gauges

Nîmes radar 

+

12h FC from modified analysis

100 km

12h accumulated precipitation: 8 Sept 12 UTC  9 Sept 2002 00 UTC
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A very simple example of variational data assimilation

- Short-range forecast (background) of 2m temperature from model: xb with error b.

- Simultaneous observation of 2m temperature: yo with error o.

The best estimate of 2m temperature (xa=analysis) minimizes the following cost

function:

In other words:
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And the analysis error, a, verifies:
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= quadratic distance to

background and obs 

(weighted by their errors)

The analysis is a linear combination of the model background and the

observation weighted by their respective error statistics.
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Matrix HT = Adjoint of operator H



Observation operators in data assimilation
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Example of non-linear observation operator:

H = radiative transfer model



Tangent-linear and adjoint operators

The tangent-linear operator is applied to perturbations:
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Marécal and

Mahfouf (2002)

Betts-Miller (adjustment 

scheme)

Jacobians of surface rainfall rate w.r.t. T and qv

Tiedtke (ECMWF’s oper 

mass-flux scheme)

An example of observation operator

H: input = model state (T,qv)   output = surface convective rainfall rate
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The minimization of the cost function J is usually 

performed using an iterative minimization procedure

cost function J J(xb)

Jmini
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Example with control vector x = (x1,x2)
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As an alternative to the matrix method, adjoint coding can be carried out using a

line-by-line approach (what we do at ECMWF).

Automatic adjoint code generators do exist, but the output code is not optimized

and not bug-free.



Testing the tangent-linear code

The correctness of the tangent-linear model, M, must be assessed by 

checking that the first-order Taylor approximation is valid: 

Example of output from a successful tangent-linear test:

Machine 

precision 

reached

Improvement 

when 

perturbation size 

decreases

Tiny perturbations

Larger perturbations



Testing the adjoint code

The correctness of the adjoint model needs to be assessed by checking

that it satisfies the mathematical relationship: 

The adjoint test should be correct at the level of machine precision 

(typ. 13 to 15 digits for the entire model). 

Otherwise there must be a bug in the code!

Example of output from a successful adjoint test:

<M x,        y> = 0.13765102625164E-01

<     x, MT y> = 0.13765102625168E-01

The difference is 11.351 times the zero of the machine

where M is the tangent-linear model and MT is the adjoint model.



Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis is 

performed in a (quasi-)linear framework.

• However, in the case of physical processes, strong non-linearities can occur in 

the presence of discontinuous/non-differentiable processes 

(e.g. switches or thresholds in cloud water and precipitation formation).

 “Regularization” needs to be applied: smoothing of functions, reduction of 

some perturbations.

Dy (tangent-linear)

original tangent in x0

Dx (finite size perturbation)

Dy (non-linear)

x0

x

y

0

Precipitation 

formation 

rate

Cloud water amount



Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity
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Nonlinear finite difference: 

M(x+x) – M(x)
Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 45 **u-velocity
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Tangent-linear integration: Mx

~700 hPa zonal wind increments [m/s] from 12h model integration. 

An example of spurious TL noise caused by a threshold in the 

autoconversion formulation of the large-scale cloud scheme.

Thursday 15 March 2001 12UTC ECMWF  Forecast t+12 VT: Friday 16 March 2001 00UTC Model Level 44 **u-velocity

-12

-8

-4

-2

-1

-0.5
0.5

1

2

4

8

12

with perturbation reduction in 

autoconversion
from M. Janisková



ECMWF operational LP package (operational 4D-Var)

Currently used in ECMWF operational 4D-Var minimizations (main simplifications with respect 

to the full non-linear versions are highlighted in red):

• Radiation: TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
- shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in non-

linear version),

- longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme: [Tompkins and Janisková 2004]

- based on a uniform PDF to describe subgrid-scale fluctuations of total water,

- melting of snow included,

- precipitation evaporation included,

- reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme: [Lopez and Moreau 2005]

- mass-flux approach [Tiedtke 1989],

- deep convection (CAPE closure) and shallow convection (q-convergence) are treated,

- perturbations of all convective quantities are included,

- coupling with cloud scheme through detrainment of liquid water from updraught,

- some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



ECMWF operational LP package (operational 4D-Var)

• RTTOV is employed to simulate radiances at individual frequencies (infrared, longwave 

and microwave, with cloud and precipitation effects included) to compute model–satellite 

departures in observation space.

• Orographic gravity wave drag: [Mahfouf 1999]

- subgrid-scale orographic effects [Lott and Miller 1997],

- only low-level blocking part is used.

• Vertical diffusion:

- mixing in the surface and planetary boundary layers,

- based on K-theory and Blackadar mixing length,

- exchange coefficients based on Louis et al. [1982], near surface,

- Monin-Obukhov higher up,

- mixed layer parametrization and PBL top entrainment recently added.

- Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag: [Oor et al. 2010]

- isotropic spectrum of non-orographic gravity waves [Scinocca 2003],

- Perturbations of output wind tendencies below 200 hPa reset to zero.



Diagnostics:

• Mean absolute errors:

• Relative error change:                                            (improvement if < 0)

• Here:  REF = adiabatic run (i.e. no physical parametrizations in tangent-linear)

        bganbgan MM xxMxx 

%100
    




REF

REFEXP





Comparison:

Finite difference of two NL integrations   TL evolution of initial perturbations 

Examination of the accuracy of the linearization for typical analysis increments:

)()()( bganbgan MM xxMxx 

Impact of linearized physics on tangent-linear approximation

typical size of 4D-Var 

analysis increments



Impact of linearized physics on TL approximation (1)

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Blue = TL error 

reduction =☺



Impact of linearized physics on TL approximation (2)

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Blue = TL error 

reduction =☺



Impact of linearized physics on TL approximation (3)

Zonal mean cross-section of change in TL error when TL includes:

VDIF + orog. GWD + SURF +  RAD + non-orog GWD + moist physics

Relative to adiabatic TL run (50-km resol.; 20 runs; after 12h integr.).

Temperature

Blue = TL error 

reduction =☺



Applications



1D-Var with radar reflectivity profiles

Background

xb=(Tb,qb,…)
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Impact of ECMWF linearized physics on forecast scores

Comparison of two T511 L91 4D-Var 3-month experiments with & without 

full linearized physics: Relative change in forecast anomaly correlation.

> 0 =☺



The validity of the linear assumption for precipitation quickly drops in

the first hours of the forecast, especially for smaller scales.
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Influence of time and resolution on linearity assumption in physics

Results from ensemble runs with the MC2 model (3 km resolution) 

over the Alps, from Walser et al. (2004).

Comparison of a pair of “opposite twin” experiments.

Linearity

☺



• Linearized physical parameterizations have become essential components 

of variational data assimilation systems (4D-Var):

 Better representation of the evolution of the atmospheric state during the 

minimization of the cost function (via the adjoint model integration).

 Extraction of information from observations that are strongly affected by 

physical processes (e.g. by clouds or precipitation).

• However, there are some limitations to the LP approach:

1) Theoretical:

The domain of validity of the linear hypothesis shrinks with increasing  

resolution and integration length.

2) Technical:

Linearized models require sustained & time-consuming attention:

 Testing tangent-linear approximation and adjoint code.

 Regularizations / simplifications to eliminate any source of instability.

 Revisions to ensure good match with reference non-linear forecast model. 

Summary and prospects (1)



Summary and prospects (2)

• In practice, it all comes down to achieving the best compromise between:

Realism

Cost Linearity

• Alternative data assimilation methods exist that do not require the 

development of linearized code, but so far none of them has been able to 

outperform 4D-Var, especially in global models:

 Ensemble Kalman Filter (EnKF; still relies on the linearity assumption),

 Particle filters (difficult to implement for high-dimensional problems).

• So what is the future of LP?



From a small challenge…



… to a much bigger challenge…



Summary and prospects (3)

• Eventually, it might become impractical or even impossible to make LP work

efficiently at resolutions of a few kilometres, even if the linearity constraint

can be relaxed (e.g. by using shorter 4D-Var window or weak-constraint 4D-

Var).

?
Thank you!
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No regularization in 

convection scheme

12-hour ECMWF model 

integration (T159 L60) 

Temperature on level 48

(approx. 850 hPa)

Finite difference 

between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear model



Corresponding 

perturbations evolved 

with tangent-linear 

model

Regularization in 

convection scheme

(buoyancy & updraught 

velocity reduced 

perturb.)

12-hour ECMWF model 

integration (T159 L60) 

Temperature on level 48

(approx. 850 hPa)

Finite difference 

between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear 

model



Linearity issue

Dy (tangent-linear) = 0
tangent in x0

x

y

0

threshold

Dx (finite size perturbation)

Dy (non-linear)

x0

Precipitation 

formation 

rate

Cloud water amount



Tangent linear code Adjoint code

δx = 0 δx* = 0

δx = A δy + B δz δy* = δy* + A δx*

δz* = δz* + B δx*

δx* = 0

δx = A δx + B δz δz* = δz* + B δx*

δx* = A δx*

do k = 1, N

δx(k) = A δx(k1) + B δy(k)

end do

do k = N, 1,  1  (Reverse the loop!)

δx*(k 1) = δx*(k1) + A δx*(k)

δy*(k ) = δy*(k) + B δx*(k)

δx*(k) = 0

end do

if (condition)  tangent linear code if (condition) adjoint code

Basic rules for line-by-line adjoint coding (1)

And do not forget to initialize local adjoint variables to zero ! 

Adjoint statements are derived from tangent linear ones in a reversed order



Tangent linear code Trajectory and adjoint code

if (x > x0) then

δx = A δx / x

x = A Log(x) 

end if

------------- Trajectory ----------------

xstore = x     (storage for use in adjoint)

if (x > x0) then

x = A Log(x) 

end if

--------------- Adjoint ------------------

if (xstore > x0) then

δx* = A δx* / xstore

end if

Basic rules for line-by-line adjoint coding (2)

The most common sources of error in adjoint coding are:

1) Pure coding errors (often: confusion trajectory/perturbation variables),

2) Forgotten initialization of local adjoint variables to zero,

3) Mismatching trajectories in tangent linear and adjoint (even slightly),

4) Bad identification of trajectory updates:

To save memory, the trajectory can be recomputed just before the adjoint 

calculations.



Illustration of discontinuity effect on cost function shape:

Model background = {Tb, qb};  Observation = RRobs

Simple parametrization of rain rate:  

RR =    {q  qsat(T)}   if q > qsat(T), 

0   otherwise
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A short list of existing LP packages used in operational DA

▪ Tsuyuki (1996): Kuo-type convection and large-scale condensation schemes 

(FSU 4D-Var).

▪ Mahfouf (1999): full set of simplified physical parametrizations 

(gravity wave drag currently used in ECMWF operational 4D-Var and EPS).

▪ Janisková et al. (1999): full set of simplified physical parametrizations 

(Météo-France operational 4D-Var).

▪ Janisková et al. (2002): linearized radiation (ECMWF 4D-Var).

▪ Lopez (2002): simplified large-scale condensation and precipitation scheme 

(Météo-France).

▪ Tompkins and Janisková (2004): simplified large-scale condensation and 

precipitation scheme (ECMWF).

▪ Lopez and Moreau (2005): simplified mass-flux convection scheme (ECMWF).

▪ Mahfouf (2005): simplified Kuo-type convection scheme (Environment Canada).



1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC; Southwest Pacific)

TRMM Precipitation Radar 

AQUA MODIS image 

TRMM-PR swath

Cross-section



1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

Vertical cross-section of rain rates (top, mm h-1) and reflectivities (bottom, dBZ): 

observed (left), background (middle), and analyzed (right).

Black isolines on right panels = 1D-Var specific humidity increments.

2A25 Rain Background Rain

2A25 Reflectivity Background Reflect.

1D-Var Analysed Rain

1D-Var Analysed Reflect.



Three 4D-Var assimilation experiments (20 May - 15 June 2005):

CTRL = all standard observations.

CTRL_noqUS = all obs except no moisture obs over US (surface & satellite).

NEW_noqUS = CTRL_noqUS + NEXRAD hourly rain rates over US ( “1D+4D-Var”).

CTRL_noqUS – CTRL NEW_noqUS – CTRL_noqUS

Mean differences of TCWV analyses at 00UTC

Own impact of NCEP Stage IV hourly precipitation data over the U.S.A.

(combined ground-based radar & rain gauge observations)

Lopez and Bauer (Monthly Weather Review, 2007)


