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End to end Initialized Probabilistic 
Forecasting System

1)Initialization
Data Assimilation

3) Calibration
Forecast 
Assimilation 

2) Propagating information and uncertainty into 
the future: Forecast model

Stephenson et al 2005
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Initialization Problem: Production of Optimal I.C.

• Optimal Initial Conditions: those that produce the best forecast.

Need of a metric: lead time, variable, region (i.e. subjective choice)

In 4D-var the metric is the energy norm  of the atmosphere at short lead time (6-12h)

This does not guarantee optimal forecast at the extended or seasonal range.

There is not criteria to optimize the other Earth System Components: ocean, land, …

• Initial conditions should represent accurately the state of the real world  and project 

into the model attractor, so the model is able to evolve them.

Difficult in the presence of model error

Initialization Shock and forecast drift

• Practical requirements arising from calibration: 

➢ Stationary forecast  errors 

➢ Consistency between re-forecasts and real time fc

Need for historical reanalysis
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• Initialization Shock

• Forecast drift and calibration

• Example: initialization of the ocean

• Approaches to initialize Earth System predictions

• Initialization in the context of forecasting strategies: 

• Dealing with model error
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The Data assimilation process
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Initialization Shock and  Skill
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What causes initialization shock ?

Initialization shock implies that the data assimilation process has created imbalances 

in the initial condition, not supported by the model physical constrains. The observation 

information is rapidly lost  via adjustment processes that deteriorate skill.

Possible reasons for initialization shock

1. Data assimilation does not preserve model  physical constrains

• Example: Insufficient physical constrains

• Example: Data assimilation forces scales that the model is not able to represent.

• Example: Too much weight to observations and poor quality control leads to erroneous observations 

being assimilated.

2. Initial conditions produced with a different model than the used for the forecast.

• Separate initialization of ocean and atmosphere

• Different model cycles
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Coupled Initialization and Forecast Shock

Laloyaux et al, 2014 QJ, Mulholland et al, 2015MWR

U1
Uncoupled Ini

AN mod = FC mod 

Approach for real time fc

C1
Coupled Ini (CERA)
AN mod = FC mod 

Future systems

M1

Uncoupled Ini

AN  mod .ne. FC mod 

Approach for Coupled reforecast

ORA analysis
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Initialization shock: 

forecast error growth depends on Initialization

From Mulholland et al, 2015 MWR

Slowest Forecast  Error Growth: coupled initialization

Fastest  Forecast  Error Growth:  Ini Model .ne. FC. Model  and uncoupled initialization 

Uncoupled: different models

Uncoupled: Same models

Coupled
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Example of fc drift in Seasonal Forecast 

Stockdale et al 2018. ECMWF Tech Memo 835
Johnson et al 2019, GMD 

Fc drift in the mean: first moment of distribution  (bias) 
• Bias depends on model (not on the initialization)

• Bias depends on model resolution
• Bias depends of lead time
• Bias depends on the phase of seasonal cycle

SEAS5 S4      S5-lr S5-mr

SEAS5: Current ECMWF Seasonal Forecasting System
S4      : Previous   “             “                “               “ 
S5-lr  : As SEAS5, with low resolution ocean and atmos
S5-mr: As SEAS5, with low resolution ocean, high res atmos

Fc drift in the variance (the second moment) 

• The interannual variability is affected

• The figure shows the ratio model/obs variability.

FC drift depends on the model
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Forecast calibration

At the medium range, a-posteriori fc calibration is not used

• Forecast drift exist, but a-posteriori calibration is considered not worth it.

➢ Timeliness of the forecasts is critical.

➢ A-posteriori calibration would slow the production.

➢ Large amount of data to process.

➢ Instead, the ensemble is tuned a-priori to achieve reliable forecast

At the extended/seasonal range a-posteriori fc calibration is needed

෤𝑥 = ത𝑦 + 𝐊 𝑥 − ҧ𝑥 + 𝐅𝜀𝑥

Bias correction  ( ഥ𝒙 ≠ ഥ𝒚 )

K: linear transformation of 
anomalies

F: Adjustment of ensemble 
spread
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Dealing with model error: Reforecast

reanalysis

Coupled reforecasts, needed to estimate climatological PDF, 

require a historical  reanalysis

Real time Probabilistic 

Coupled Forecast

time

Consistency between historical and 
real-time initial conditions is 

required.

Reforecasts are also needed for skill estimation
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The basis for extended range forecasts

•Forcing by boundary conditions changes the atmospheric circulation, 
modifying the large scale patterns of temperature and rainfall, so that the 
probability of occurrence of certain events deviates significantly from 
climatology.

➢ Important to bear in mind the probabilistic nature of SF

•The boundary conditions have longer memory, thus contributing to the 
predictability. Important boundary forcing:

➢ Tropical SST: ENSO, Indian Ocean Dipole, Atlantic SST

➢ Land: snow depth, soil moisture

➢ Sea-Ice

➢ Mid-Latitude SST

➢ Atmospheric composition: green house gases, aerosols,…

➢ Stratosphere
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Need to Initialize the subsurface of the ocean

2OC Isotherm Depth Eq Anomaly SST Eq Anomaly
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Progress on ENSO prediction

•Steady progress: ~1 month/decade skill gain 

•How much is due to the initialization, how much to 

model development?

S1              S2               S3       

TOTAL GAIN

OC INI

MODEL
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ECMWF Seasonal Forecasting Systems

TOTAL GAIN OC INI MODEL

Half of the gain on forecast skill is 
due to improved ocean initialization

Initialization into Context

Balmaseda et al 2010, OceanObs
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Information to initialize the ocean

• Ocean model  Plus:

SST

Atmospheric fluxes from atmospheric reanalysis

Subsurface ocean information

XBT’s 60’s      Satellite SST  Moorings/Altimeter ARGO 

1982 1993 2001

Time evolution of the Ocean Observing System
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Taux anomalies

Upper ocean heat content  anomalies. No assimilation

Upper ocean heat content anomalies.  Assimilation 

ERA15/OPS

ERA40

Uncertainty in Surface Fluxes:

Need for Data Assimilation

• Large uncertainty in wind products lead to 

large uncertainty in the ocean subsurface

• The possibility is to use  additional 

information from ocean data (temperature, 

others…)

•Questions:

1.Does assimilation of ocean data 
constrain the ocean state? YES

2.Does the assimilation of ocean data 
improve the ocean estimate? YES

3.Does the assimilation of ocean data  
improve the seasonal forecasts. YES

Equatorial Atlantic
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The Assimilation corrects the ocean mean state
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Data coverage for Nov 200560°S 60°S
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Data coverage for June 1982

Ocean Observing System
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  EQATL Depth of the 20 degrees isotherm 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Time

-95

-90

-85

-80

-75

-70

ega8 omona.assim_an0
edp1 omona.assim_an0

Impact of data assimilation on the mean

Assim of mooring data

CTL=No data

Large impact of data in the mean state leading to spurious variability           

This is largely solved by the introduction of bias correction

PIRATA
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Need to correct model  
bias during assimilation

Without explicit bias correction changes in the 
observing system can induce 

Spurious signals in the ocean reanalysis

Non-stationarity of the forecast bias, leading to forecast 

errors.

Ideally, the bias  information should be propagated 
during the forecast (for this the FG model and FC model 
should be the same, e.i. coupled model)

Temperature Bias Estimation from Argo: 300m-700mTemperature Bias Estimation from Argo: 300m-700m

(C/h): Min= -1.2e-03, Max= 7.5e-04, Int= 4.0e-05
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Number of Temperature Observations  Depth=  500.0 meters
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There is  a model for the time evolution of 
the bias
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Effect of bias correction on the time-evolution

Assim of mooring data

CTL=No data

Bias corrected Assim

  EQATL Depth of the 20 degrees isotherm 

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Time
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-80
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000119590101 omona.assim_an0
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Time correlation with altimeter SL product
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Impact on Seasonal Forecast Skill

ASSIM (ORAS4)

CNTL

Consistent Improvement everywhere. Even in the Atlantic, traditionally challenging area 
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Quantifying the value of observational  information

• The outcome may depend on the coupled system

• In a good system information may be redundant, but not detrimental. 

If adding more information degrades the results, there is something wrong with the 
methodology (coupled/assim system)

• Experiments conducted with the ECMWF S3 

SST  (SYNTEX System Luo et al 2005, Decadal Forecasting Keenlyside et al, 2008)

SST+ Atmos observations (fluxes from atmos reanalysis)

SST+ Atmos observations+ Ocean Observations (ocean reanalysis)

Balmaseda and Anderson 2009, GRL
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Impact of “real world” information on skill:

Optimal use of the observations needs more sophisticated assimilation techniques and better 
models, to reduced initialization shock

Increase (%) in MAE of SST forecasts 

from removing external information

 (1-7 months)
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The additional information about the real world improved the forecast skill, 
except in the Equatorial Atlantic

Reduction in Error (MAE) in SST SF by 
adding observational information



Predictability Training Course –Initialization Strategies for Seamless Forecasting Systems   

Initialization and forecast drift and shock

ALL  ATMOS+SST   SST only

Different initializations produce different drift in the 
same coupled model.

Warm drift in ALL caused by Kelvin Wave, triggered by the 
slackening of coupled model equatorial winds

SST only  has very little equatorial heat content, and the 
SST cool s down very quickly.

SST+ATMOS seems balanced in this region. Not in others

Sign of non linearity:

The drift in the mean affects the  variability
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• Approaches to initialize Earth System predictions

• Initialization in the context of forecasting strategies: 

• Dealing with model error
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Perceived Paradigm for initialization of coupled forecasts

Real world Model world

Medium range
Full initialization: Being close to the real 
world is perceived as advantageous.  
Model  slowly drift to its own mean state.

Decadal or longer
Anomaly initialization: Avoid 
forecast drift by initializing around the 
model mean state

Anomaly initialization is not the same as model attractor initialization
Anomaly Initialization (decadal forecasts, Smith et al 2007)
Full initialization with coupled models of the slow component only
Other more sophisticated (EnKF, coupled DA, weakly coupled DA)

Seasonal?

At first sight, this paradigm would not allow a seamless prediction system. 
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Full Initialization Approach 

Some Known Caveats

• Non-stationary model error.
• Seasonal cycle dependence, which is known and catered for.
• Other unknown dependences not considered: trends, changes in observing system
• Drift depends of lead time.  A large number of hindcasts is needed. This is even more 

costly in decadal forecasts. 

• Initialization shock can be larger than model bias

SST FC bias 
CFS.v2
Kumar et al 2011 MWR

Non-linearities and non-stationarity can sometimes render the aposteriori calibration invalid
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Anomaly Initialization 

Original purpose: to avoid expensive 
calibration. The model climatology does not depend 
of forecast lead time. Cheaper in principle than 
reforecasts.

But reforecasts are still needed for skill estimation.
And calibration still needed in practice.

Long 

coupled 

integration

Model climatology 
+observed anomaly

)]()[( xxHyyKxx  ffa

Acknowledgment of existence of model error during 
initialization.

Model error is not corrected (“bias blind 
algorithm”):

Full Initialization

As Medium range but:
Ocean Model bias taken into account during DA.

A posteriori calibration of forecast is needed. Calibration 
depends on lead time.

If uncoupled: the model during the initialization is 
different from the forecast model. Bias correction 
estimated during initialization can not be applied during 
the forecasts
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Balmaseda, JMR, 2017
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Shock, Model error and non linearities

Forecast lead time
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1) Initialization

Data Assimilation

3) Calibration

Forecast 

Assimilation

2) Propagating information,  uncertainty  and error  into 

the future: Forecast model

Treatment of system errors

✓ Stochastic parameterizations for sub-grid processes. 

X Other missing processes and earth system components not represented

X            Model bias is not targeted  

• Model Bias accounted for:  

removed a posterirori.

Stockdale et al 1997

• Model uncertainty considered 

(ensemble)

• Observation error neglected *

• Residuals are non stationary, 

non gaussian. 

Limitation to forecast skill

calibration is more difficult 

✓ Initial uncertainty considered.

✓ Model uncertainty starts 

being considered.

✓ Observation uncertainty 

considered

✓ Observation bias considered

X Model bias ignored in 

atmosphere. 

Model:              x= ҧ𝑥 + ƴ𝑥 + ε𝑥
Observations:   y= ത𝑦 + ƴ𝑦 + ε𝑦



Calibration is complex if errors are non stationary

38

Stephenson et al 2005

Kharin et al 2012

Fukar et al 2014

෤𝑥 = ത𝑦 + 𝐊 𝑥 − ҧ𝑥 + 𝐅𝜀𝑥 + 𝐓 𝑡 +G(y0)

Bias correction  ( ഥ𝒙 ≠ ഥ𝒚 )

K: linear transformation of anomalies

F: Adjustment of ensemble spread

T: detrending

G: other flow dependent corrections

From Kharin eta la 2012

Error in  mean state errors degrades variability and  forecast skill, making 

forecast errors non stationary and calibration difficult. Too many parameters

Can model error be treated more explicitly during the forecast process?



Mean state error influencing model fidelity and skill

Correcting model biases leads to better representation of variability  (or model 

fidelity) : 

(several papers: D’Andrea and Vautard 2000, Balmaseda et al 2010, Scaife 2011, ….)

Correcting bias in tropical SST improves  seasonal forecast skill  of ENSO, 

tropical cyclones…

Magnusson et al 2012, Vecchi et al 2014: 

Correcting biases in atmosphere improves seasonal atmospheric predictability: 

Kharin and Scinocca 2012 

Correcting North Atlantic SST bias improves subseasonal skill over North 

Atlantic and Europe 

Vitart and Balmaseda 2018

39



Non linear interactions: North Atlantic SST mean errors impact 
subseasonal forecast skill

40

From Vitart and Balmaseda 2018 SST corrected over dark 

area
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Non linear interactions: North Atlantic SST errors impact 
subseasonal forecast skill

NAO CRPSS 

differences

+ve is improvement

Main impact is on MJO/ NAO –ve teleconnections
From Vitart and Balmaseda 2018



Treatment of model error during the forecast

A. Stochastic parameterizations of sub-grid scale processes

▪ SPPT, SPP, SKEB, intrinsic stochastic parameterizations. See Berner et al 2017 for 

a review.

▪ They increase the ensemble spread (Leutbecher et al 2018). Important for tropical 

convection and ENSO (Weisheimer et al 2014).

▪ They do not tackle model bias explicitly, but change model climate (Christensen et 

al 2017, Berner et al 2018)

▪ Choice of parameters: tuned to calibrate ensemble spread or first principles

▪ Do not use optimal control based on  observations

B. Model error estimation based on observational “optimal” control  (or 

approximations): data assimilation to estimate model error

– D’Andrea and Vautard 2000

– Piccolo and Cullen 2016

-Proxi: nugdging terms as in  Kharin and Scinocca 2012…

42



Data assimilation can be used to estimate model error: 

43
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Dee and DaSilva 1998

Dee and Todling 2001

Tremolet 2007

Balmaseda et al 2007

Adaptive term; AR1 

process, constrained by 

observations𝒃′𝑓𝑘 = 𝐀 𝒃′𝑓𝑘−1 + 𝜺𝑘

𝒃′𝑎𝑘 = 𝐀 𝒃′𝑓𝑘−1 + L [y-H(x+ 𝒃′𝑓𝑘 )]

Step 1) Analysis of assimilation 
increments to derive an empirical 
stochastic model for model error.

Step2) Apply that empirical model 
during the coupled model 
integration

For the above to make sense, the 
data assimilation should be coupled.
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• Criteria to design a good Initialization of Earth System:

• Reduce initialization shock: coupled DA contributes to more balance I.C.

• Drift and calibration: Historical and stable records of initial conditions consistent with real time needed for 

calibration: bias correction, reanalyses

• Important to exploit observational information and deal with the non stationary  observing system

• Initialization of the ocean (focus on seasonal forecasting)

• Important to initialize the dynamical and thermodynamic process

• Data assimilation changes the ocean mean state. Therefore, consistent ocean reanalysis requires an explicit 

treatment of the bias

• Assimilation of ocean observations reduces the large uncertainty (error) due to the forcing fluxes. 

Initialization of Seasonal Forecasts needs SST, subsurface temperature, salinity and altimeter derived sea 

level anomalies.  

• Different approaches to initialization: full versus anomaly initialization

• Objective of a forecasting system: stationary forecast errors, so they are easy to 

calibrate.


