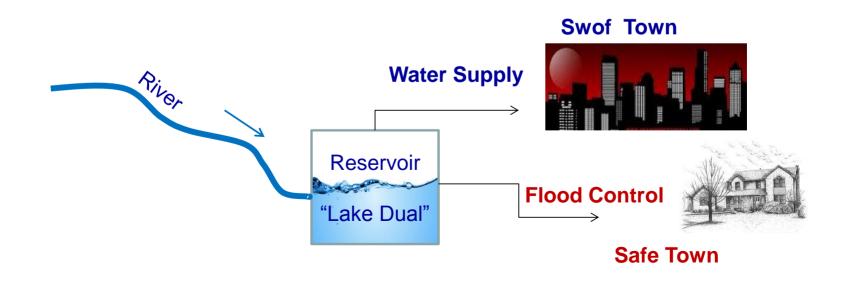
A risk-based decision-making game relevant to water management. Try it yourself!

Florian Pappenberger

Schalk Jan van Andel

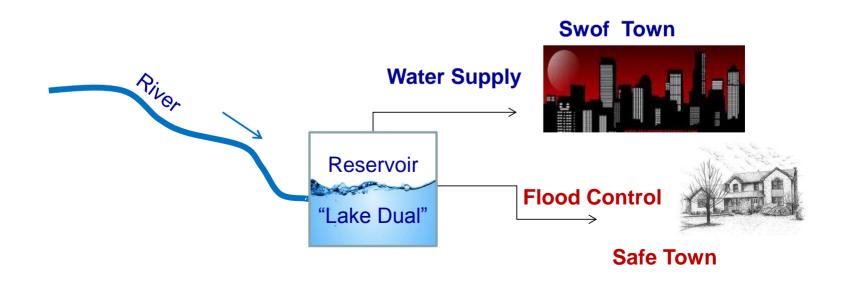
Andy Wood

Maria-Helena Ramos & Louise Crochemore



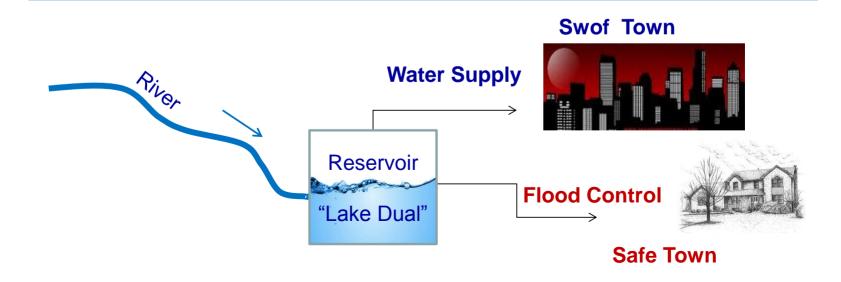
Water management game: instructions

You are the newly appointed water manager for Lake Dual


It is a reservoir that serves two primary functions:

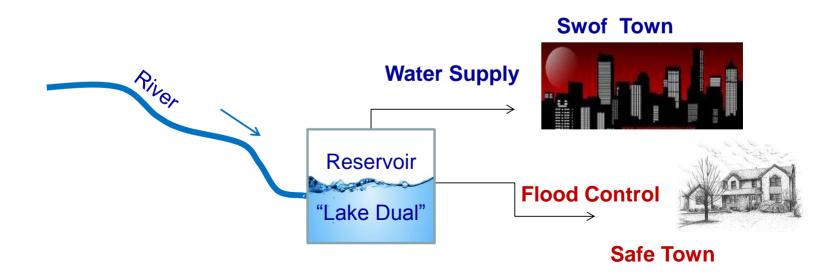
- 1. Water supply for **Swof Town**
- 2. Flood control for Safe Town

Water management game: instructions


- 1. **Swof Town:** would like to see the reservoir full on August 1st (500 Mm³) so that its residents can count on water all summer.
- 2. **Safe Town:** residents are interested in keeping releases below 60 Mm³ each month (anything more causes flood damage to their homes)

Water management game: instructions

You are going to be the **water manager** for Lake Dual during the season running **from April to August**:


- you will be presented with **probabilistic forecasts** of inflows, and
- at the beginning of each month you have to **decide on the reservoir** releases for the remaining months.

Water management game: remember!

- ➤ your aim is to have the reservoir level as close as possible to **500 Mm³** on August 1st, but you can **never exceed** this level.
- ➤ You have to maintain a minimum release of 15 Mm³ for environmental flow and your maximum release cannot exceed 60 Mm³.

If you fail to meet these constraints, you will be fired! The **WINNER** of the game is the manager that has the highest level on August 1st (but < 500 Mm³)

Water management game: worksheet

June :

May : ____

It's 1st May

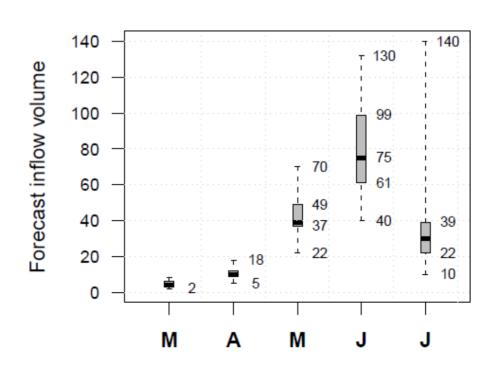
Median inflow over the previous 30 years: 52 Mm³

You have a worksheet to mark your decisions! Remember to return it after the game!

NOW LET'S DO AN EXAMPLE BEFORE WE START!

A risk-based decision-making game relevant to water management

Try it yourself!


Your release schedule The actual Inflow Your initial reservoir volume for the Did you overtop the reservoir? 15 ≤ release ≤ 60 of the month next forecast: (reservoir > 500) (Mm³)No, I still have my job **EXAMPLE:** March: 15 460 + 5 - 15 = Yes, I got fired It's 1st March Median inflow over the April:30 previous 30 years: 4 Mm3 450 Mav : 60 June :30 July : 15 No, I still have my job It's 1st April April : Yes, I got fired Median inflow over the previous 30 years: 12 Mm3 May:


No, I still have my job

Yes, I got fired

Its March 1st: this is the probabilistic forecast of inflows issued on March 1st for the next months

ESP Forecast on: March 1

You have to decide on your releases for all the next months...

Mark the releases in your worksheet!

A risk-based decision-making game relevant to water management

/ Try it yourself!					
	Your release schedule 15 ≤ release ≤ 60	The actual Inflow of the month (Mm³)	Your initial reservoir volume for the next forecast :	Did you overtop the reservoir? (reservoir > 500)	
EXAMPLE: It's 1 st March Median inflow over the previous 30 years: 4 Mm³	March: 15 April : 30 May : 60 June : 30 July : 15	5	460 + 5 - 15 = 450	No, I still have my job Yes, I got fired	X
It's 1 st April Median inflow over the previous 30 years: 12 Mm³	April : May : June : July :	_	450 + =	No, I still have my job Yes, I got fired	
It's 1 st May Median inflow over the previous 30 years: 52 Mm ³	May :	_	+=	No, I still have my job Yes, I got fired	

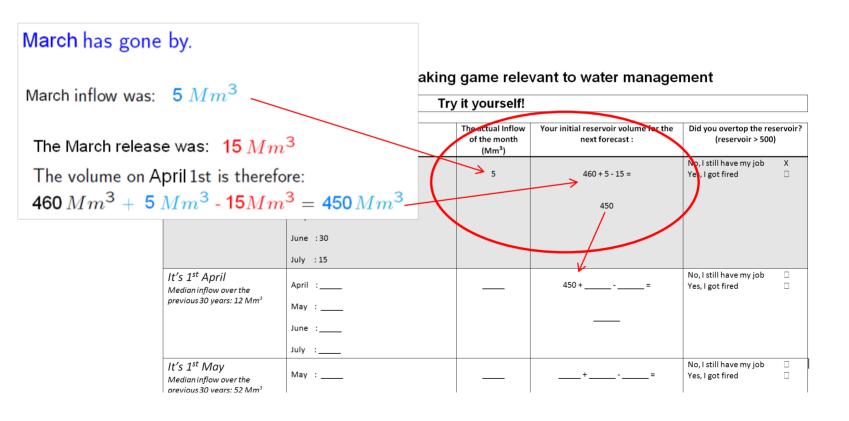
At the end of the month, you will be informed of the actual inflow

And you can update your reservoir volume for the next month

March has gone by.

March inflow was: $5 Mm^3$

The March release was: $15 Mm^3$


The volume on April 1st is therefore:

$$460 \, Mm^3 + 5 \, Mm^3 - 15 Mm^3 = 450 \, Mm^3$$

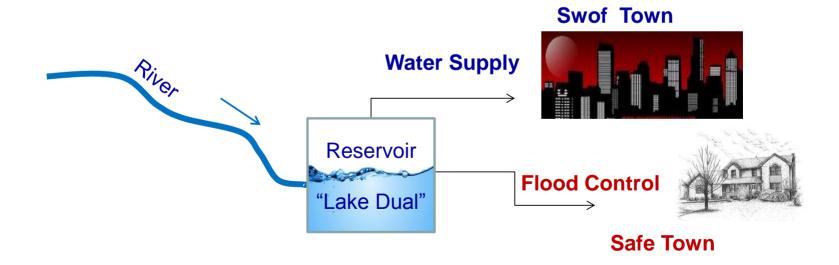
Update your worksheet and check if you still have a job!

You're ready to go to the next forecast and decision

Water management game: let's play!

Worksheets shall be used to indicate your own releases

To represent the group....


We need a VOLUNTEER!

Who in the room?

Water management game: let's play!

Game Start

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is June 1st.

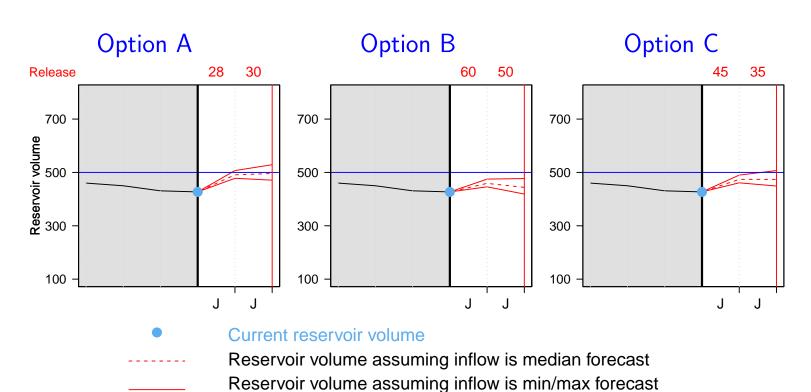
The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

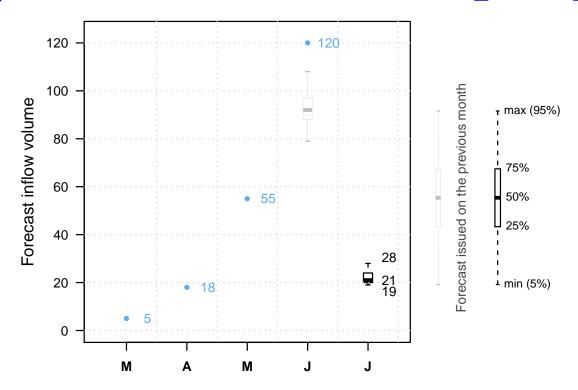
The volume on July 1st is therefore:

 $427 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 519 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



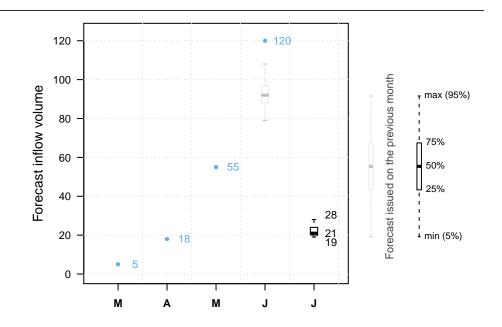
It is July 1st.

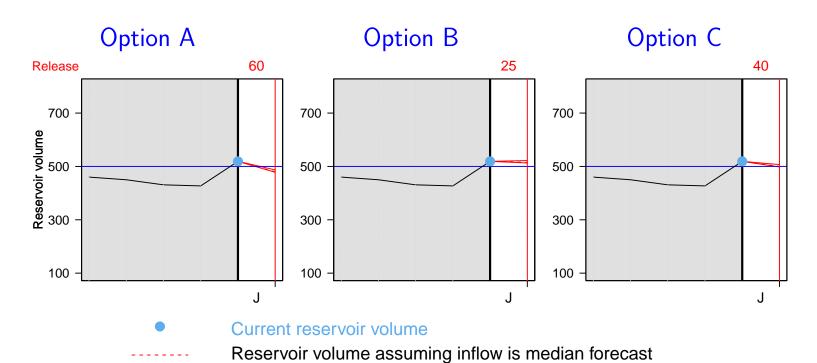
The reservoir is at $519 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.


If the volume exceeds 500 Mm^3 , you are fired.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

July has gone by.

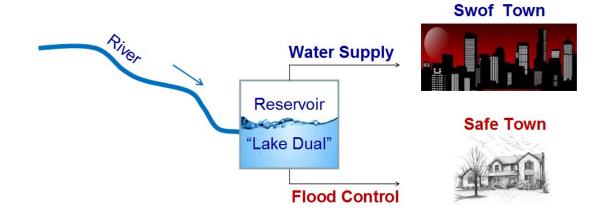
July inflow was: $22 Mm^3$

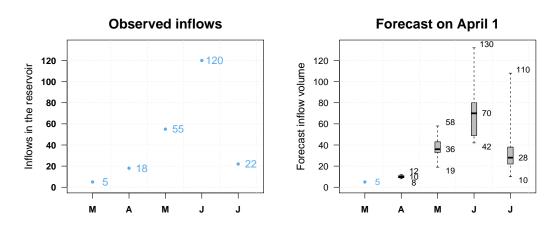
Our volunteer's July release was: $60 Mm^3$

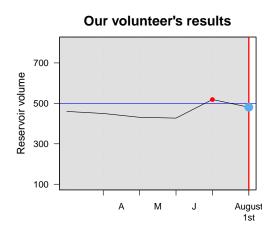
The volume on August 1st is therefore:

$$519 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 481 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

What about our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

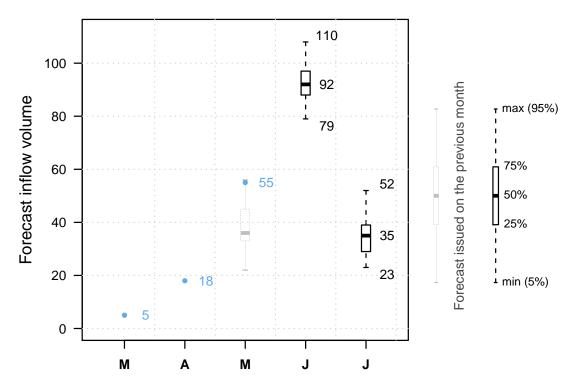
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

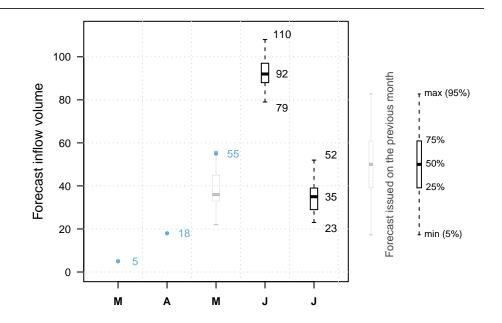


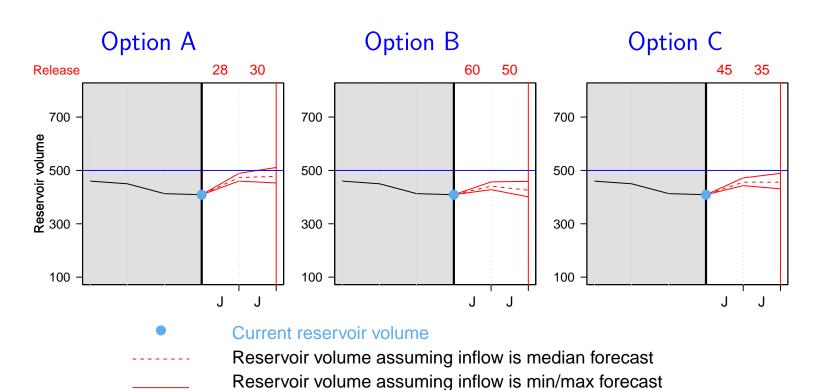
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

 $409 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

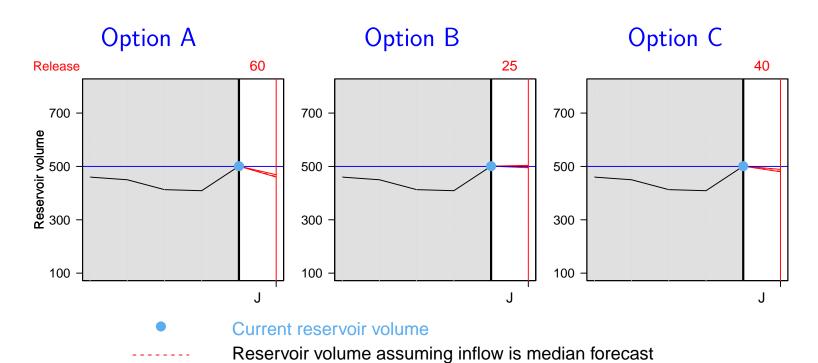
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

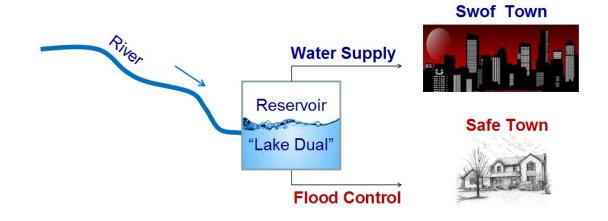
July inflow was: $22 Mm^3$

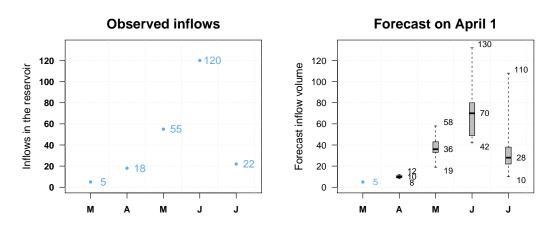
Our volunteer's July release was: $60 Mm^3$

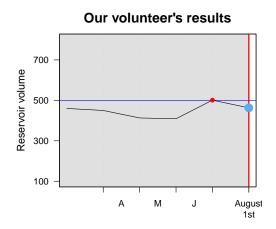
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 463 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

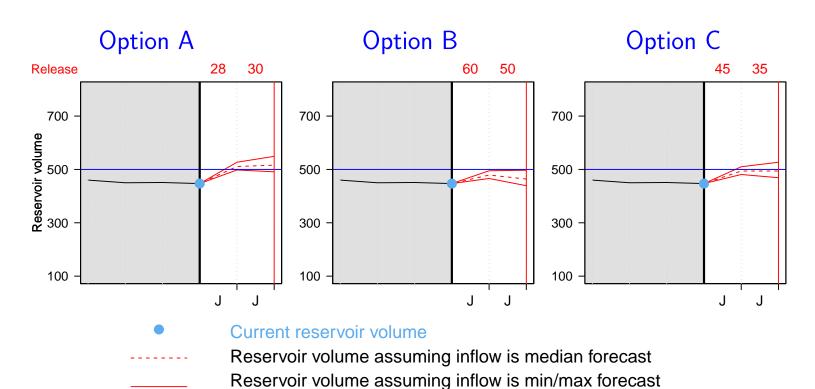
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 539 Mm^3$

Overtop!

The volunteer got fired!

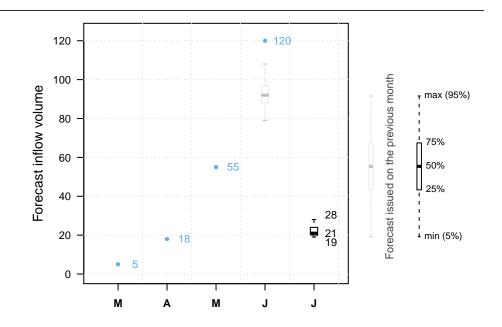
Can it be fixed?

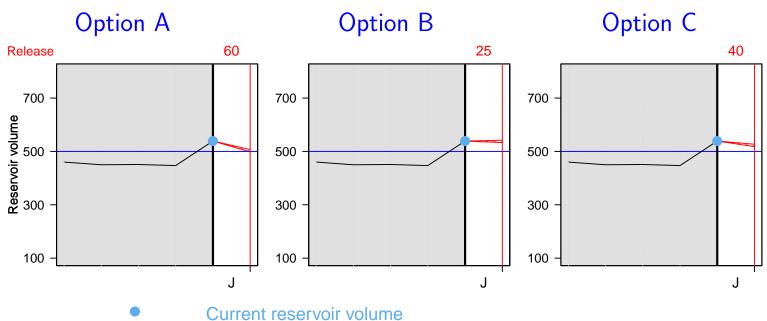
It is July 1st.

The reservoir is at $539 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's which release option see our volunteer will choose.

Reservoir volume assuming inflow is median forecast Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

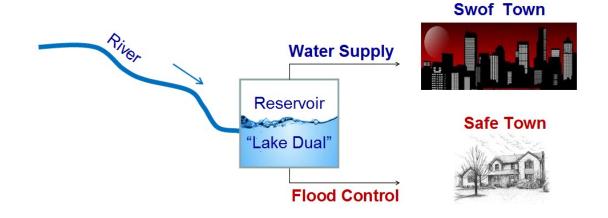
July inflow was: $22 Mm^3$

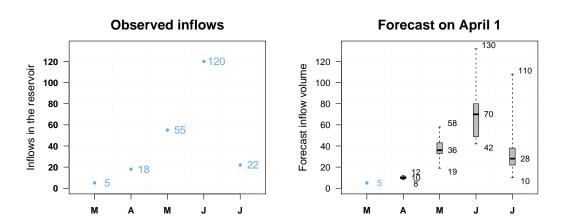
Our volunteer's July release was: $60 Mm^3$

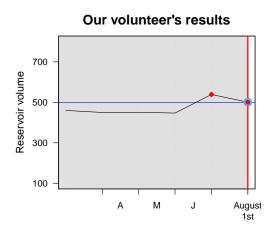
The volume on August 1st is therefore:

 $539 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

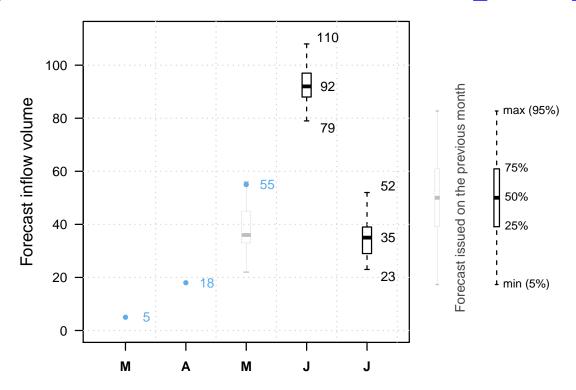
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

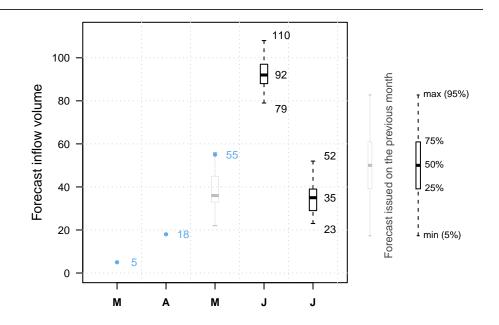


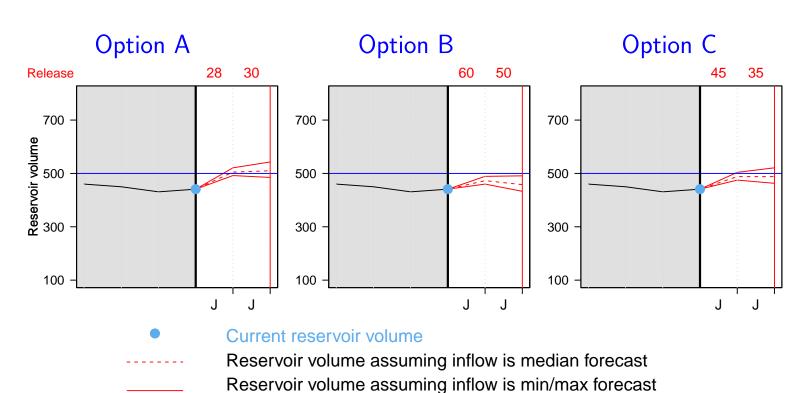
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

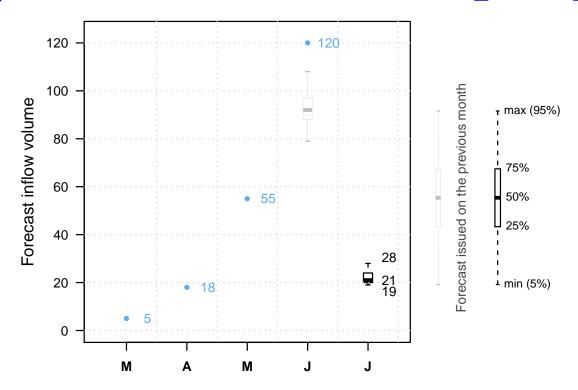
The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 533 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

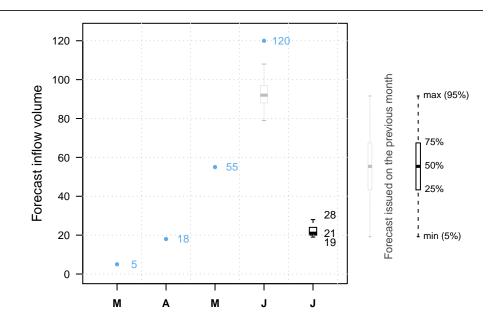


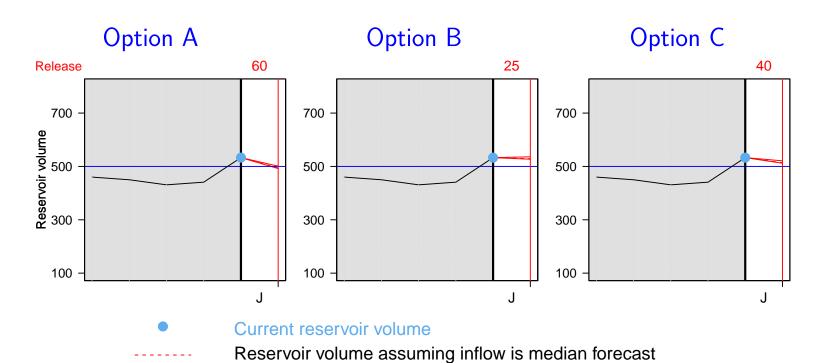
It is July 1st.

The reservoir is at $533 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

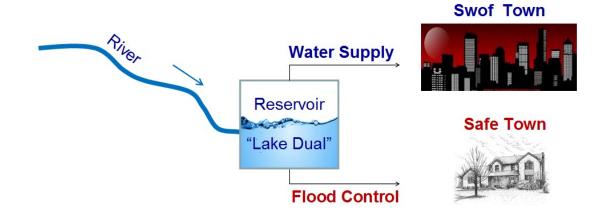
July inflow was: $22 Mm^3$

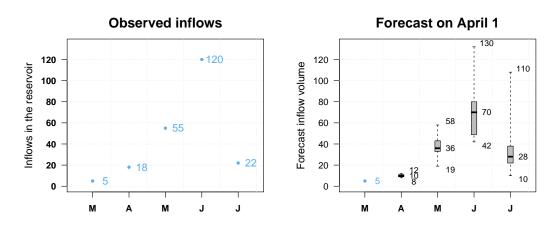
Our volunteer's July release was: $60 Mm^3$

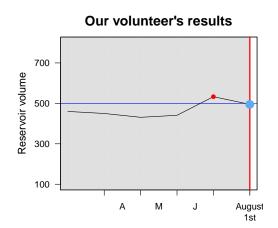
The volume on August 1st is therefore:

533
$$Mm^3 + 22 Mm^3 - 60 Mm^3 = 495 Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

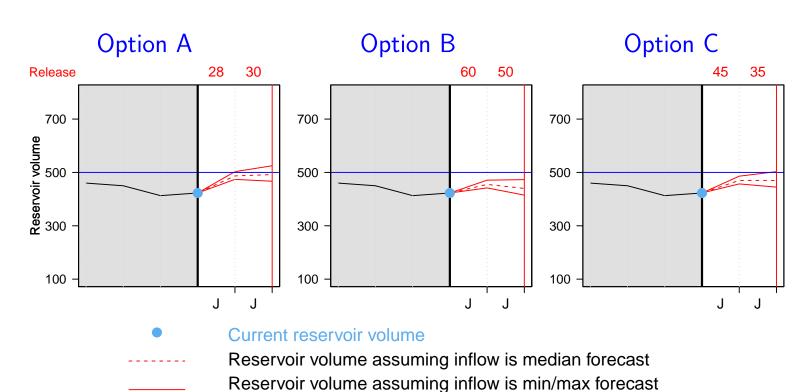
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

423 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 515 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

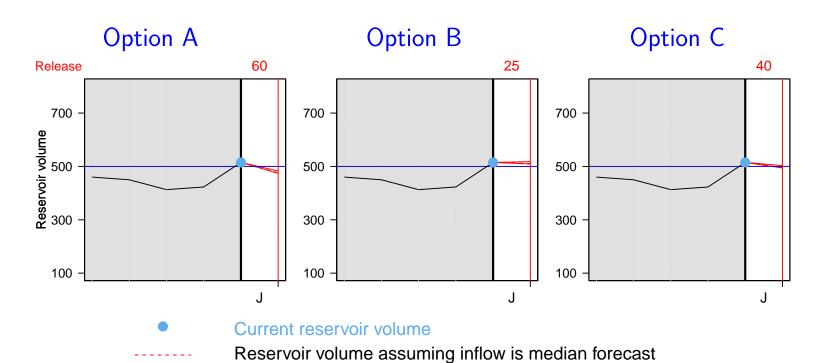
It is July 1st.

The reservoir is at $515 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

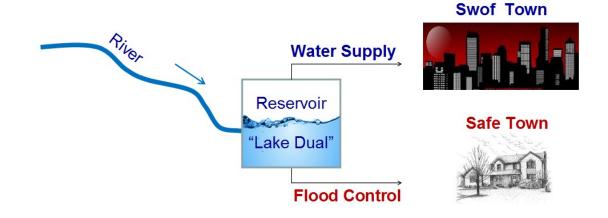
July inflow was: $22 Mm^3$

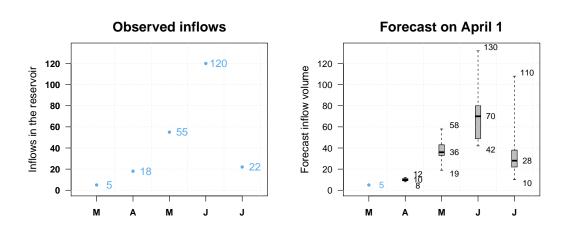
Our volunteer's July release was: $60 Mm^3$

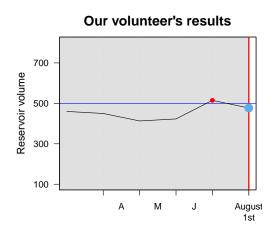
The volume on August 1st is therefore:

$$515 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 477 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

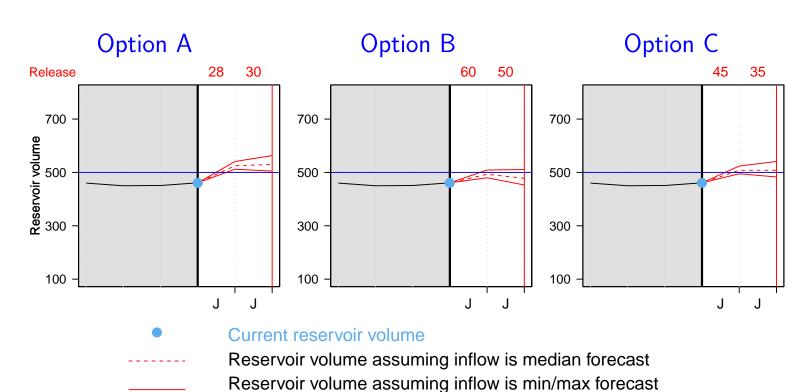
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

$$461 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 553 \ Mm^3$$

Overtop!

The volunteer got fired!

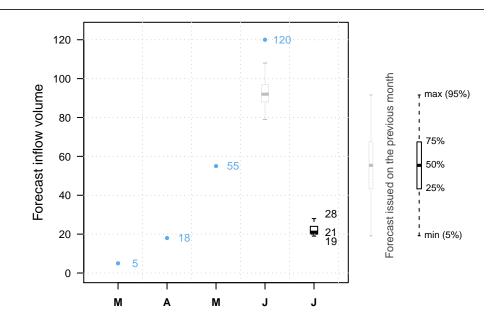
Can it be fixed?

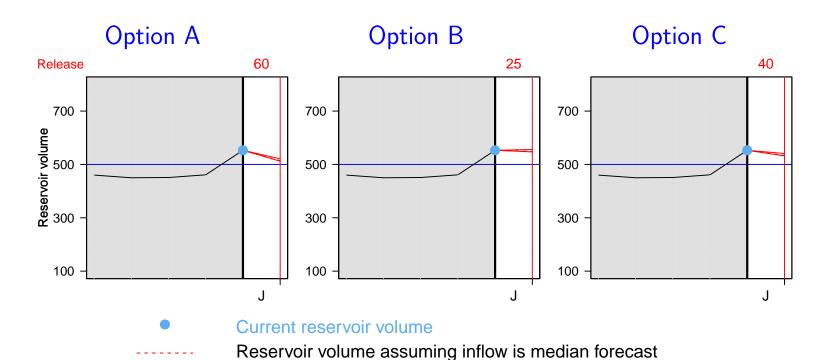
It is July 1st.

The reservoir is at $553 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

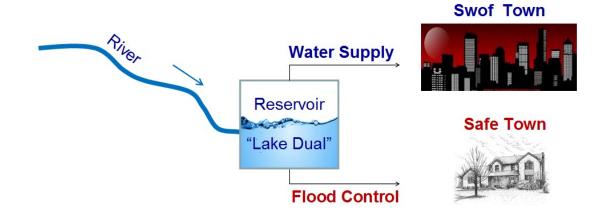
July inflow was: $22 Mm^3$

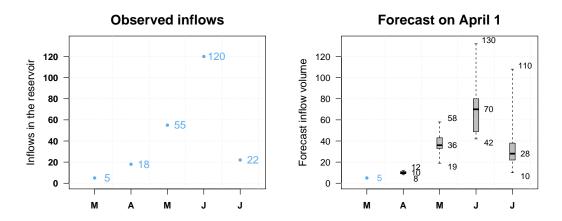
Our volunteer's July release was: $60 Mm^3$

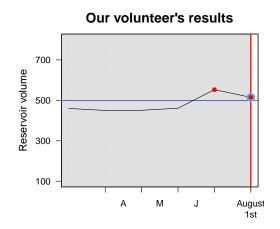
The volume on August 1st is therefore:

 $553 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 515 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

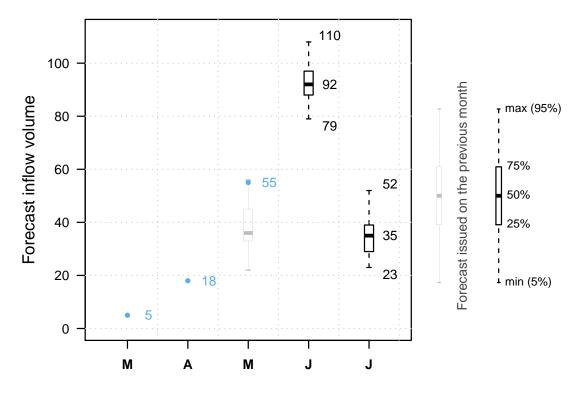
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

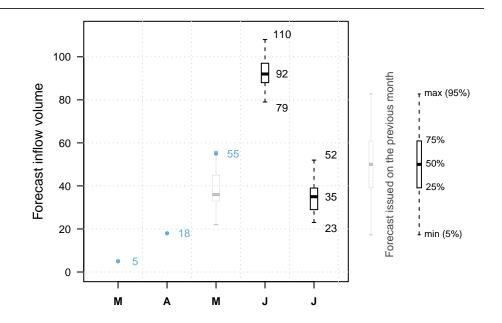


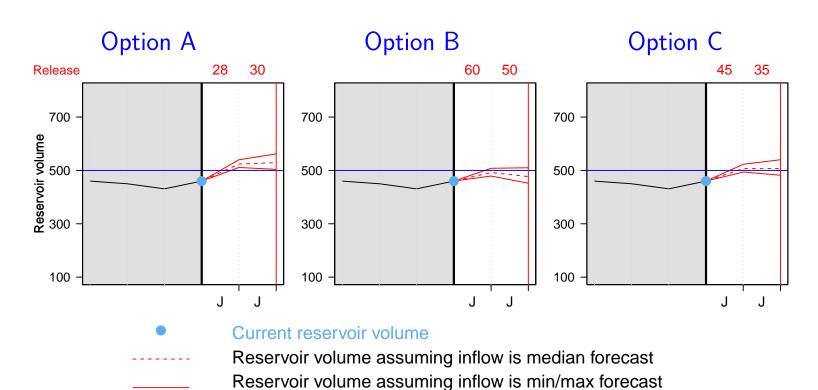
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 552 Mm^3$

Overtop!

The volunteer got fired!

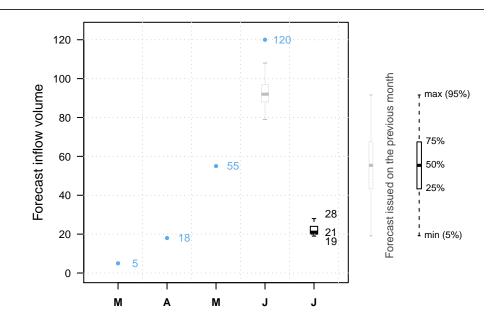
Can it be fixed?

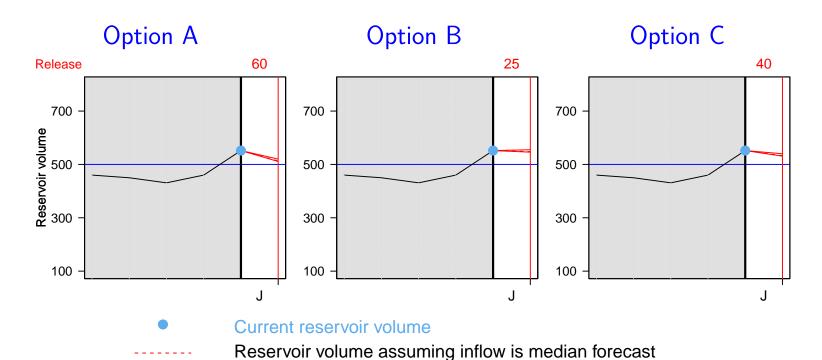
It is July 1st.

The reservoir is at $552 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

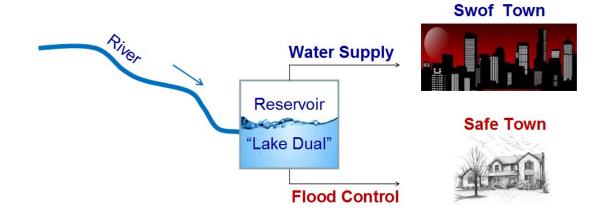
July inflow was: $22 Mm^3$

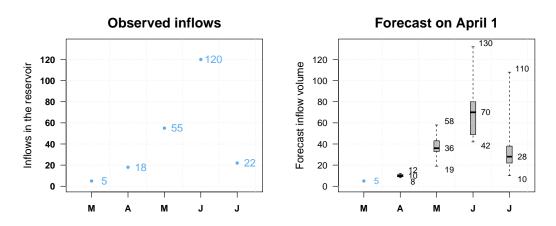
Our volunteer's July release was: $60 Mm^3$

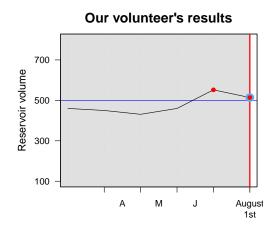
The volume on August 1st is therefore:

 $552 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 514 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

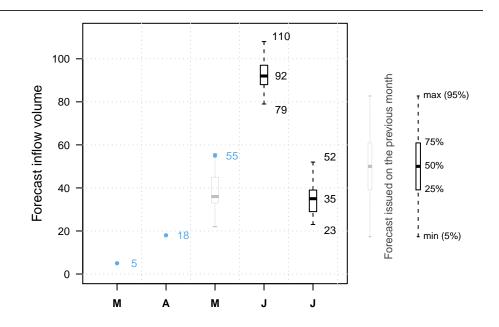
Let's go to the next forecast!

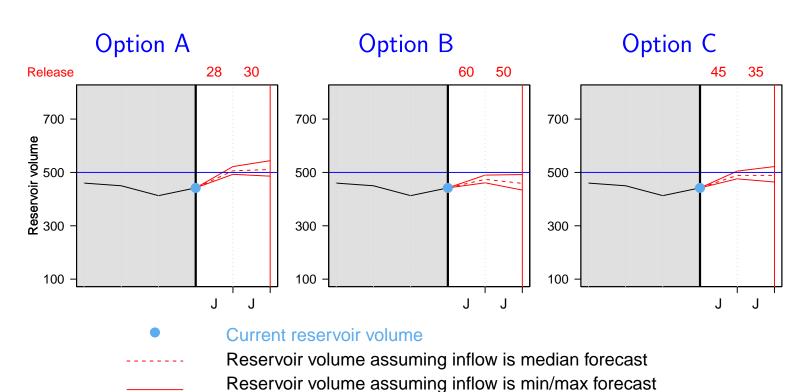
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

442
$$Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

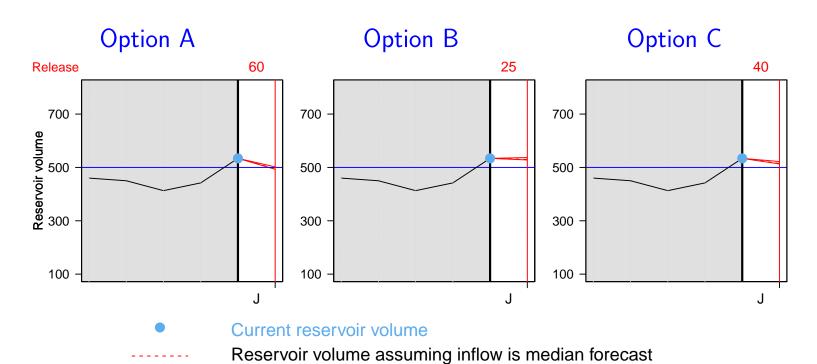
It is July 1st.

The reservoir is at $534 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

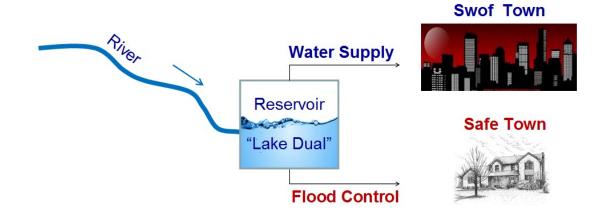
July inflow was: $22 Mm^3$

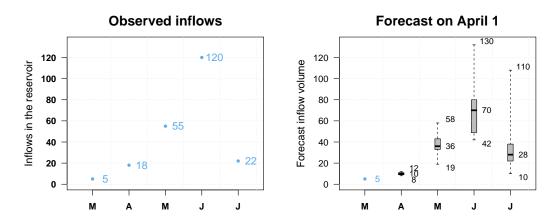
Our volunteer's July release was: $60 Mm^3$

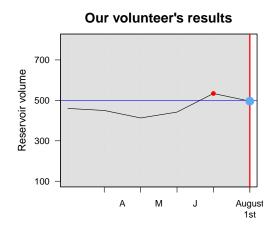
The volume on August 1st is therefore:

534
$$Mm^3 + 22 Mm^3 - 60 Mm^3 = 496 Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

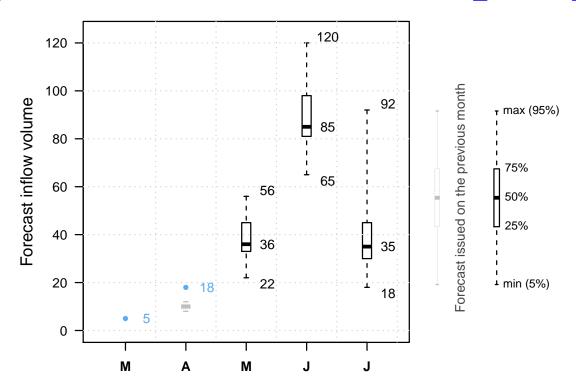
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

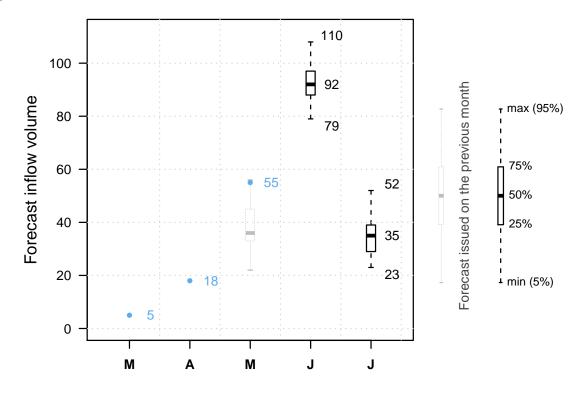
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

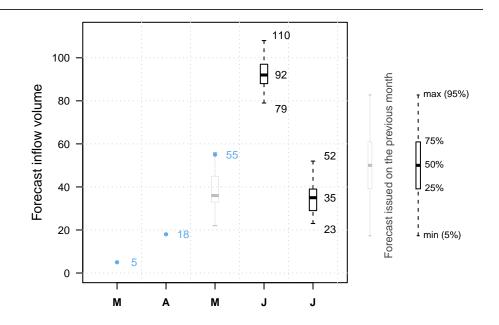


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 572 \ Mm^3$

Overtop!

The volunteer got fired!

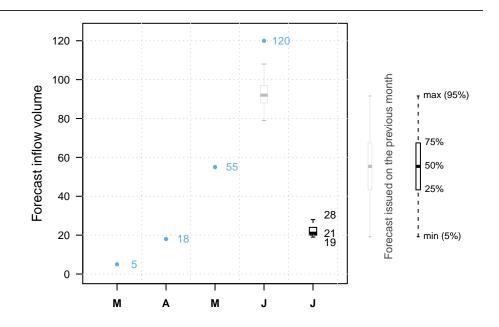
Can it be fixed?

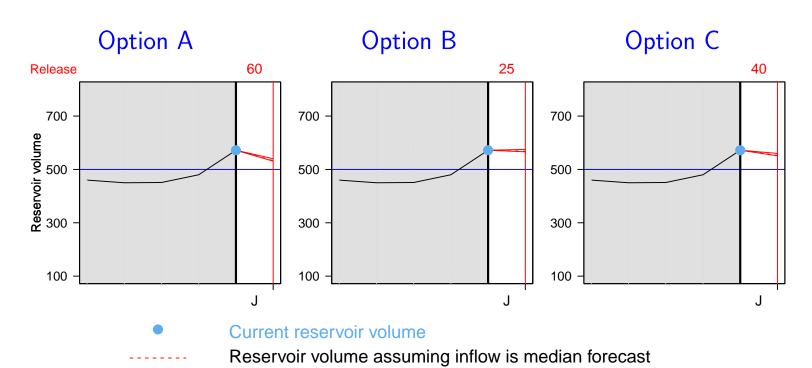
It is July 1st.

The reservoir is at $572 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

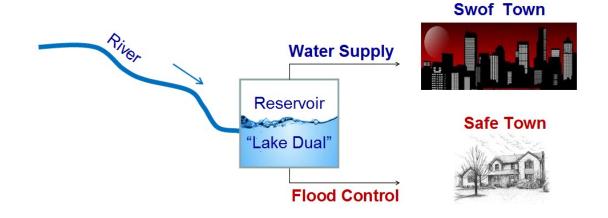
July inflow was: $22 Mm^3$

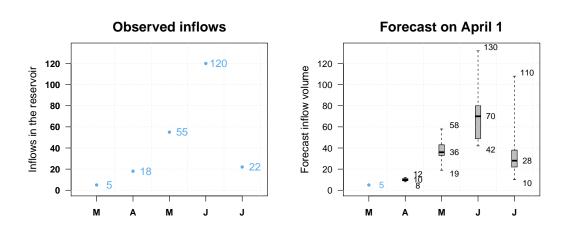
Our volunteer's July release was: $60 Mm^3$

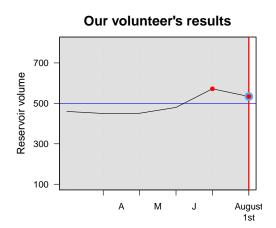
The volume on August 1st is therefore:

 $572 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 534 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

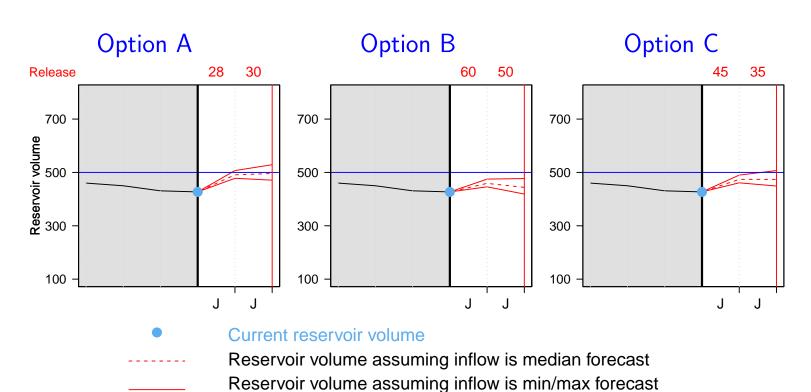
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

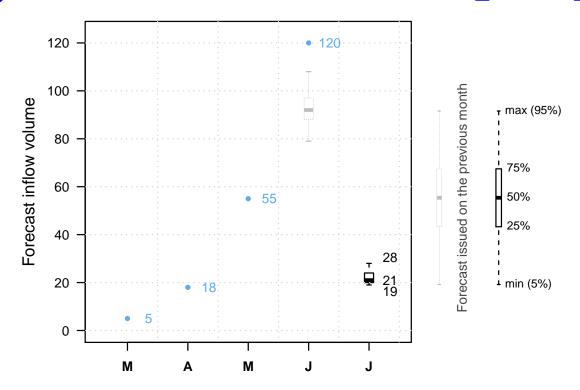
The volume on July 1st is therefore:

427
$$Mm^3 + 120 Mm^3 - 60 Mm^3 = 487 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

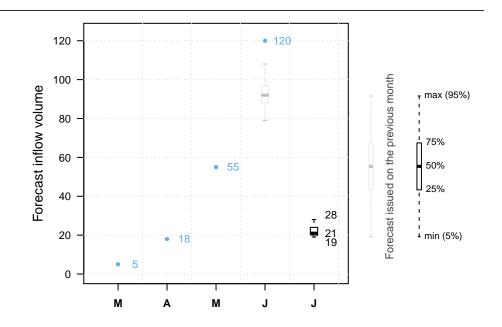


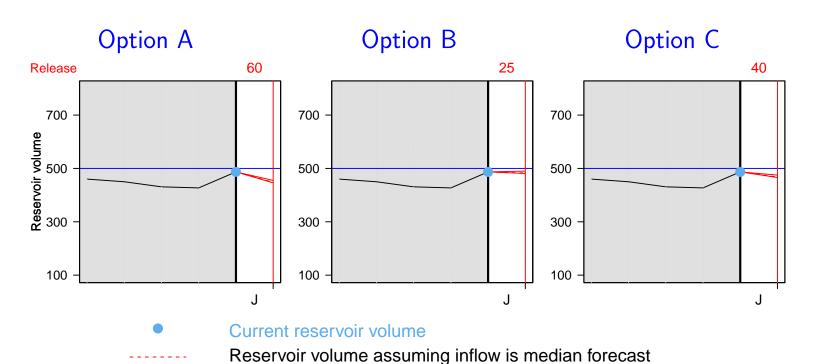
It is July 1st.

The reservoir is at 487 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

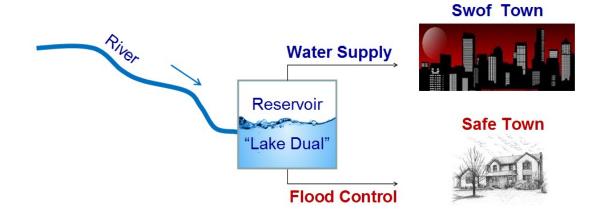
July inflow was: $22 Mm^3$

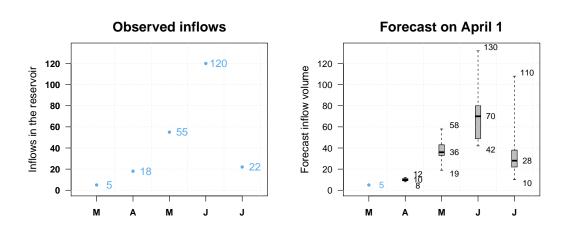
Our volunteer's July release was: $60 Mm^3$

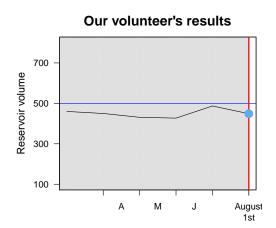
The volume on August 1st is therefore:

$$487 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 449 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

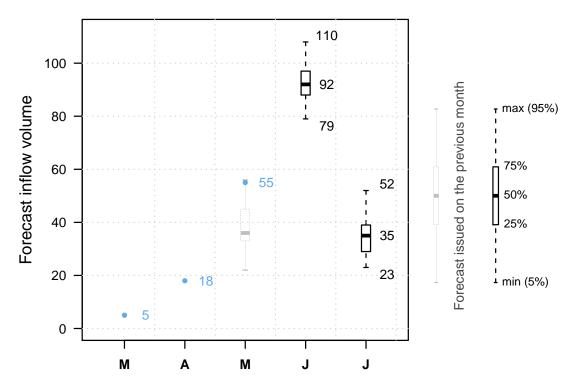
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

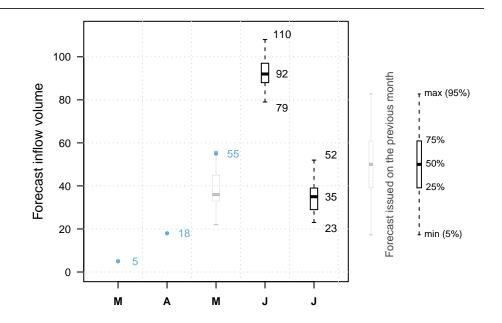


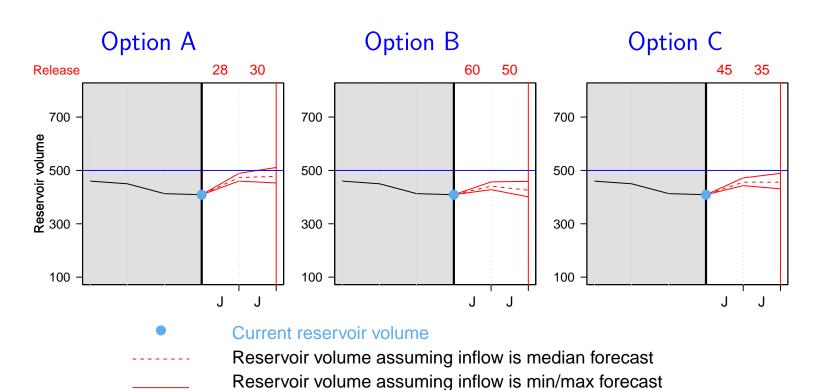
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

$$409 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$$

No overtop!

The volunteer still has a job!

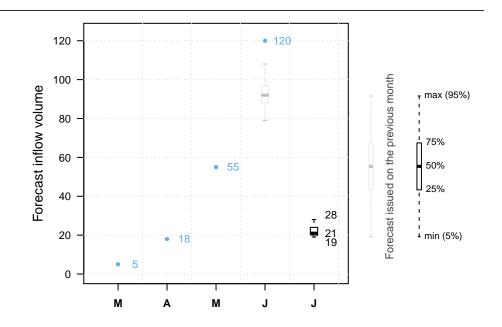
Let's go to the next forecast!

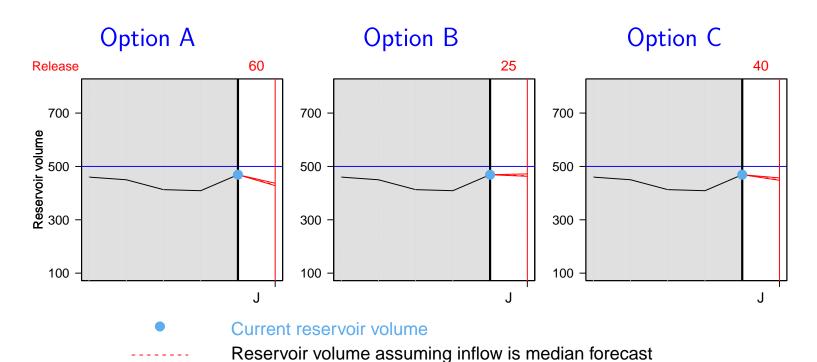
It is July 1st.

The reservoir is at 469 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

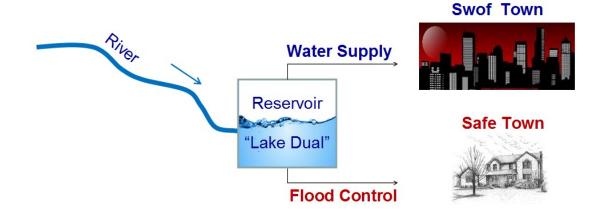
July inflow was: $22 Mm^3$

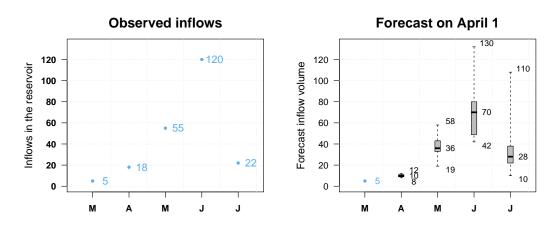
Our volunteer's July release was: $60 Mm^3$

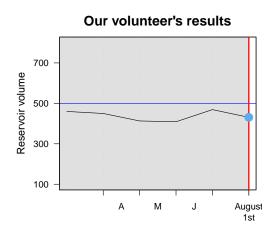
The volume on August 1st is therefore:

$$469 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 431 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

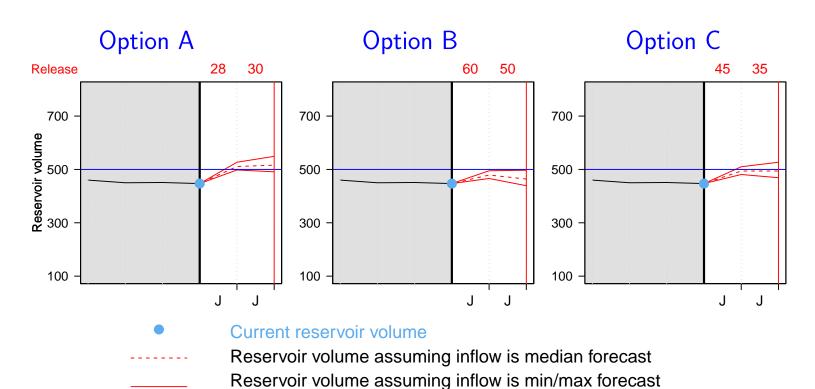
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 507 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

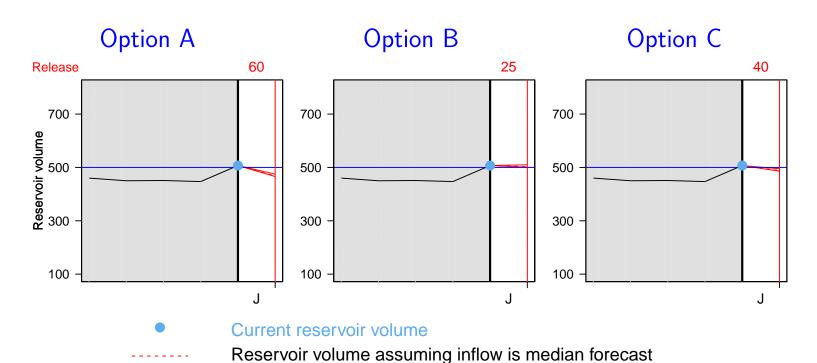
It is July 1st.

The reservoir is at $507 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

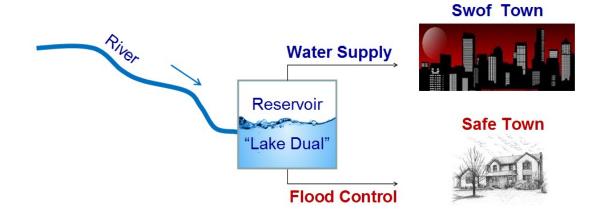
July inflow was: $22 Mm^3$

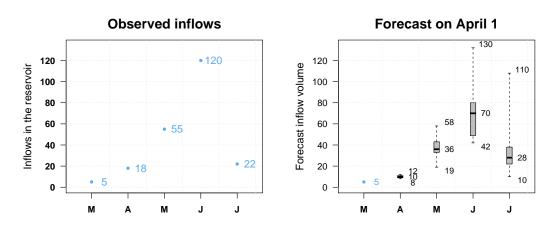
Our volunteer's July release was: $60 Mm^3$

The volume on August 1st is therefore:

$$507 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT

GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 441 \ Mm^3$$

No overtop!

The volunteer still has a job!

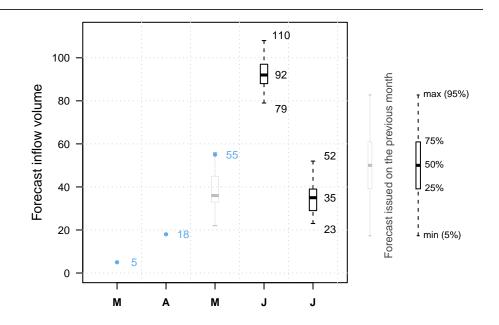
Let's go to the next forecast!

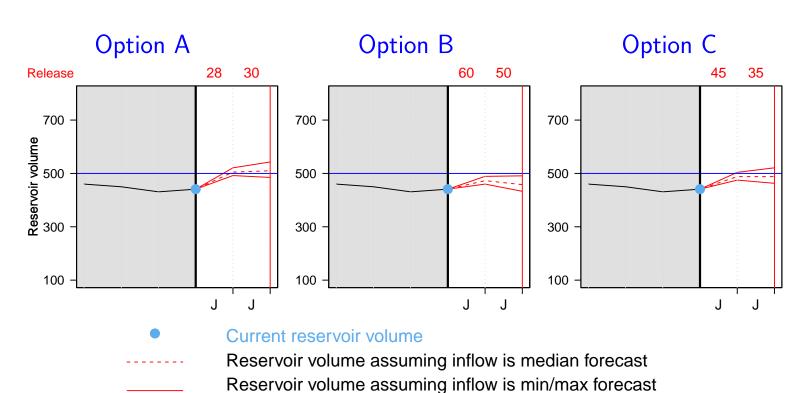
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3




Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

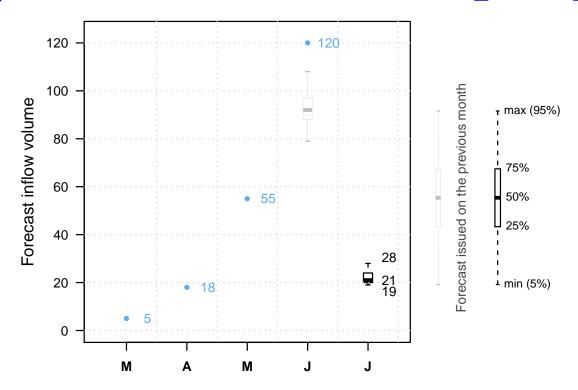
The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

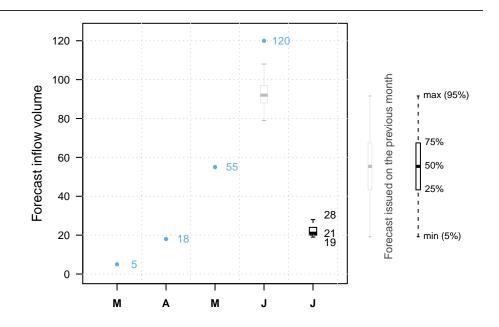


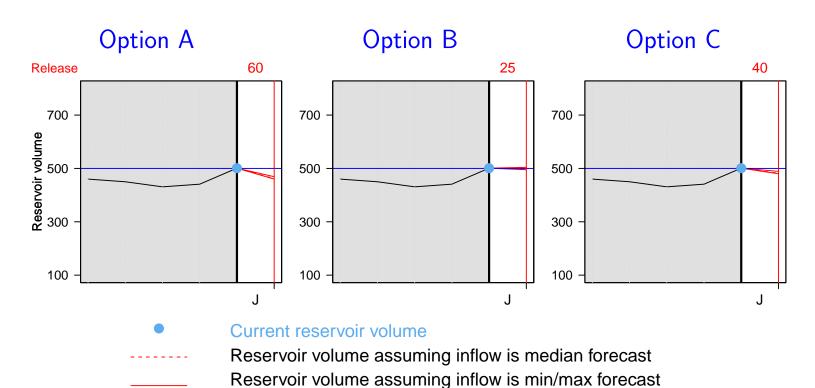
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3




Reservoir should be close to 500 Mm^3 on August 1st.

It is July 1st.

And our volunteer?

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

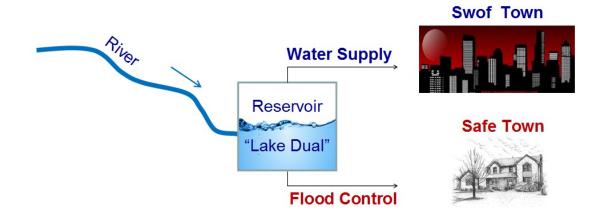
July inflow was: $22 Mm^3$

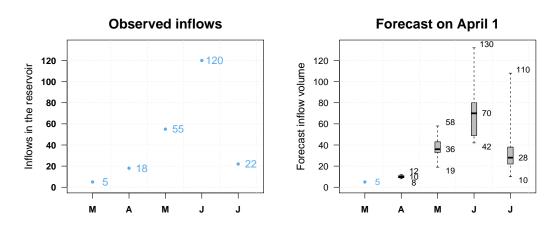
Our volunteer's July release was: $60 Mm^3$

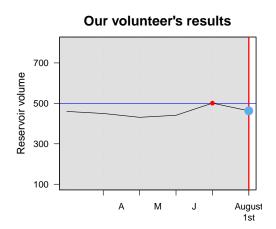
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 463 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

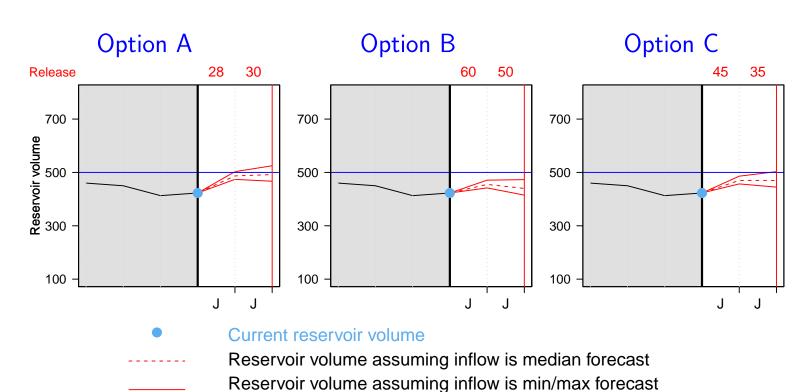
Let's go to the next forecast!

It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

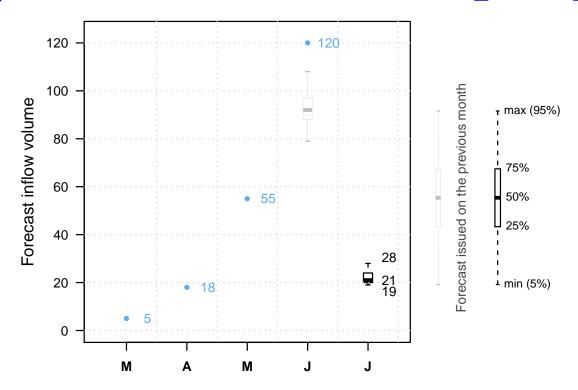
The volume on July 1st is therefore:

423
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 483 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

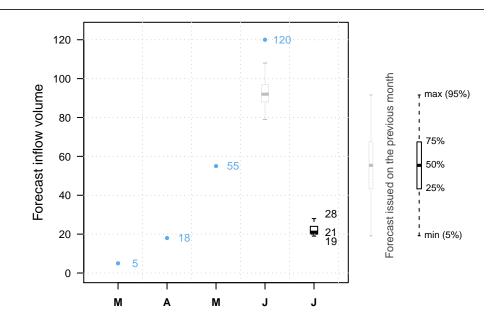


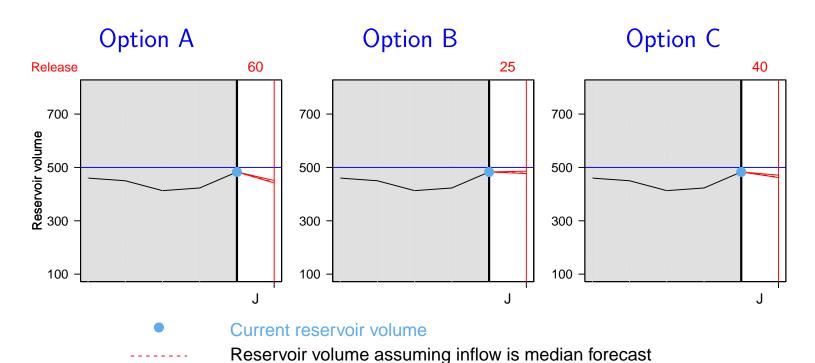
It is July 1st.

The reservoir is at 483 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

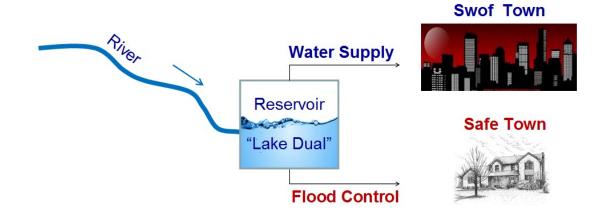
July inflow was: $22 Mm^3$

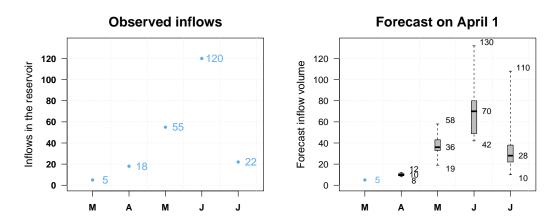
Our volunteer's July release was: $60 Mm^3$

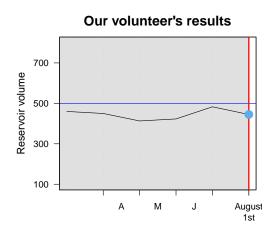
The volume on August 1st is therefore:

483
$$Mm^3 + 22 Mm^3 - 60 Mm^3 = 445 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

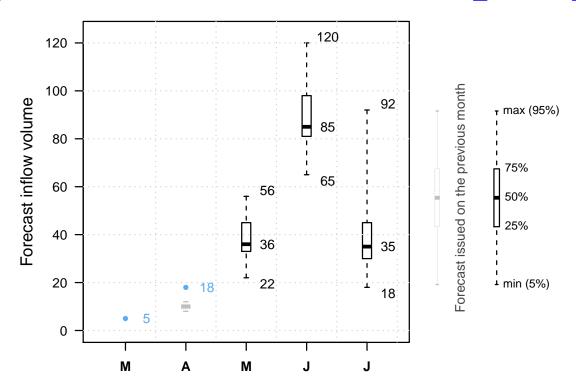
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

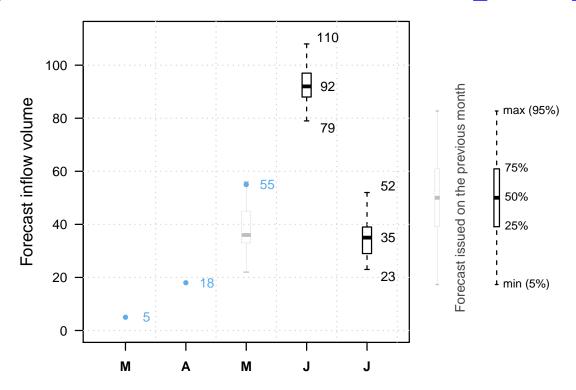
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



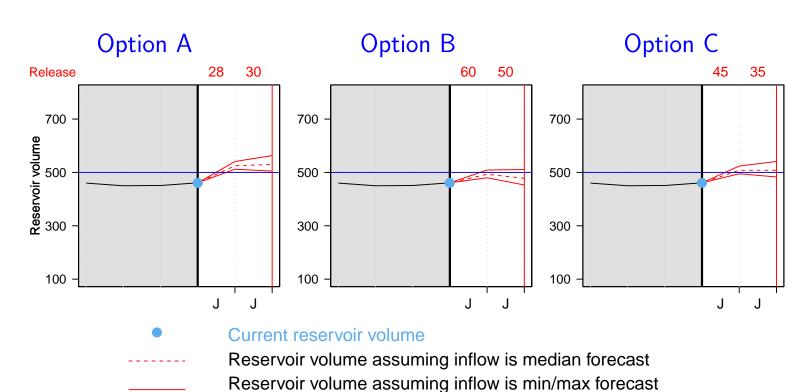
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

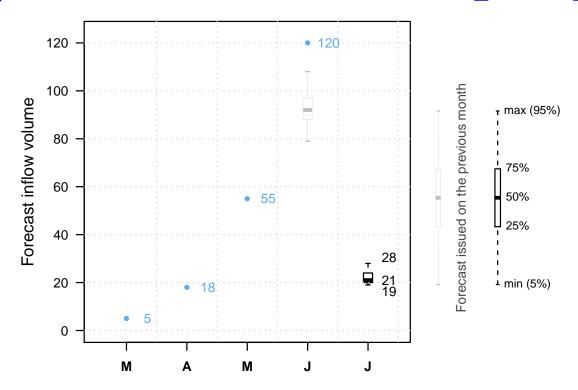
The volume on July 1st is therefore:

461
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 521 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

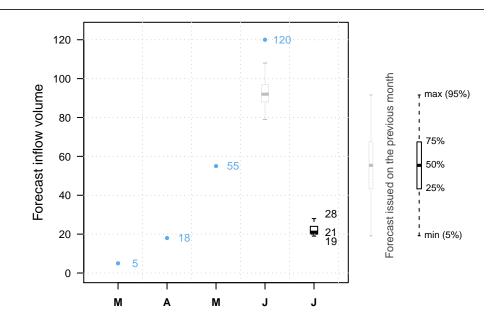


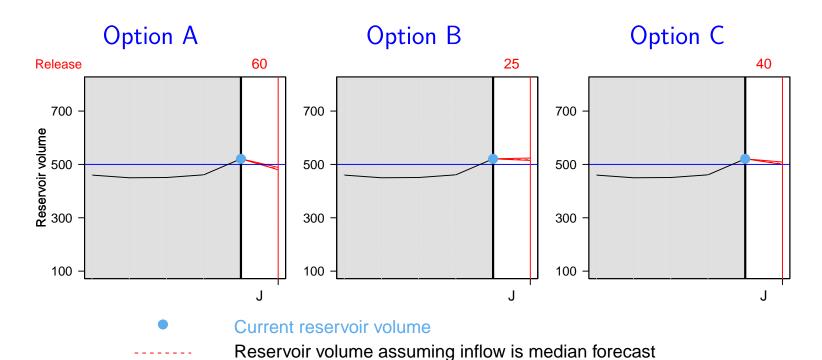
It is July 1st.

The reservoir is at $521 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

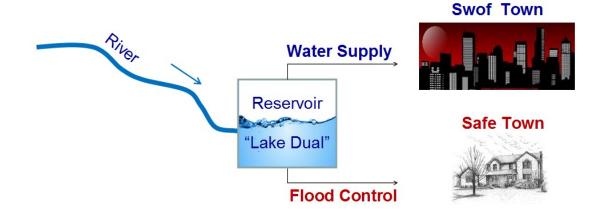
July inflow was: $22 Mm^3$

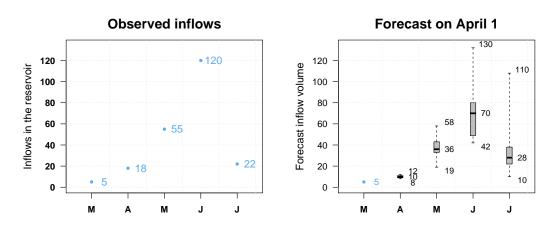
Our volunteer's July release was: $60 Mm^3$

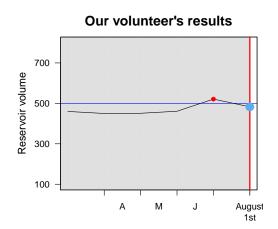
The volume on August 1st is therefore:

$$521 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 483 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

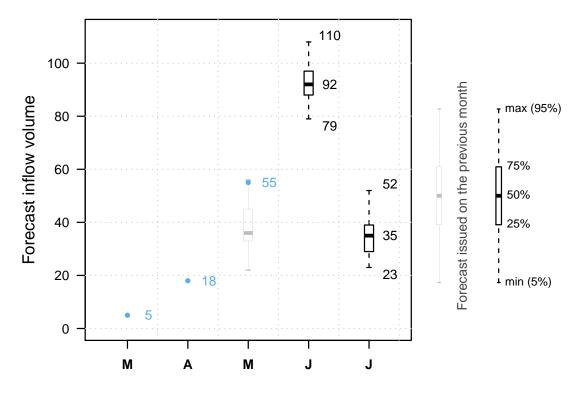
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

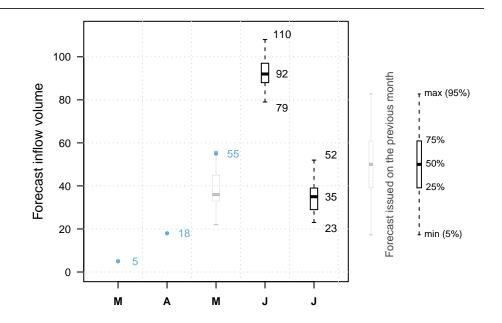


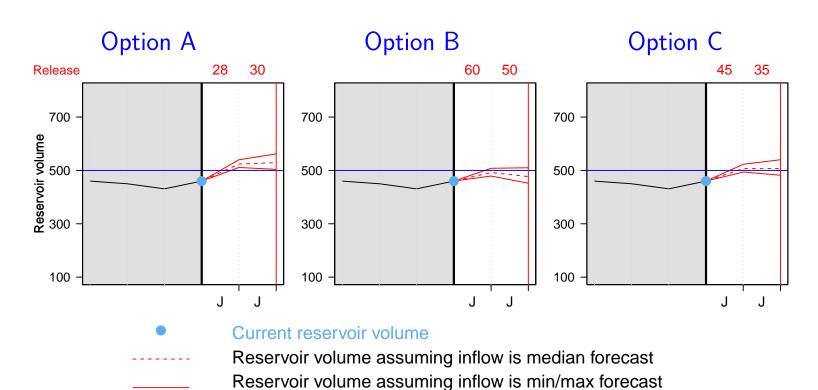
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

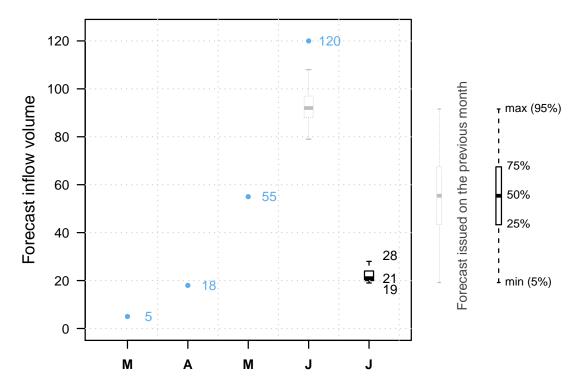
The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 60 Mm^3 = 520 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



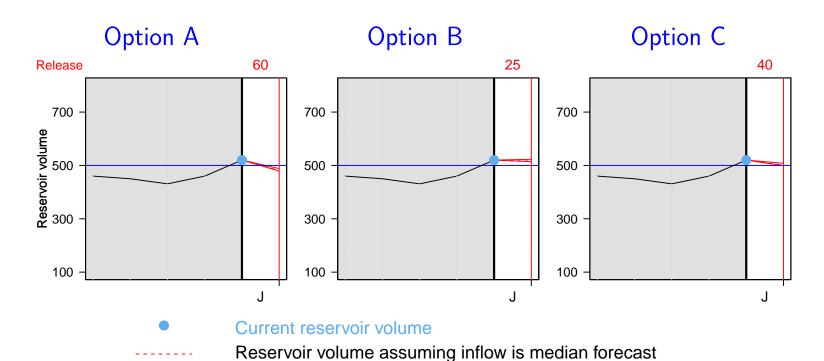
It is July 1st.

The reservoir is at $520 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

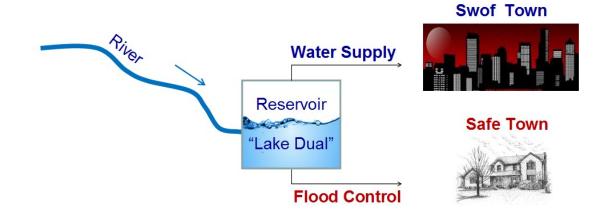
July inflow was: $22 Mm^3$

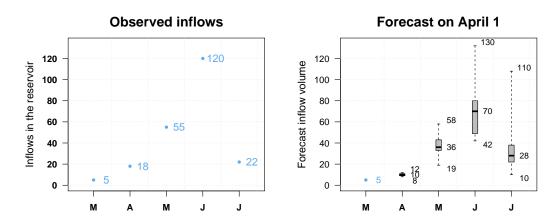
Our volunteer's July release was: $60 Mm^3$

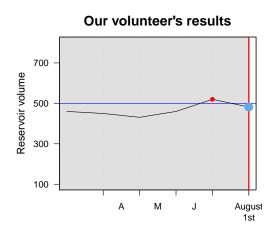
The volume on August 1st is therefore:

$$520 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 482 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

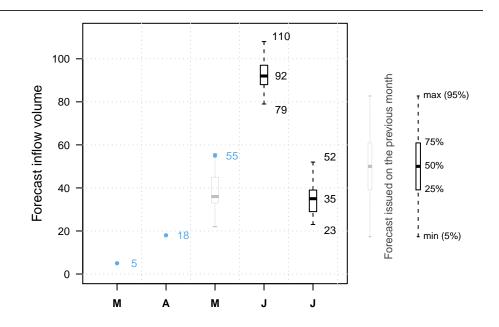
Let's go to the next forecast!

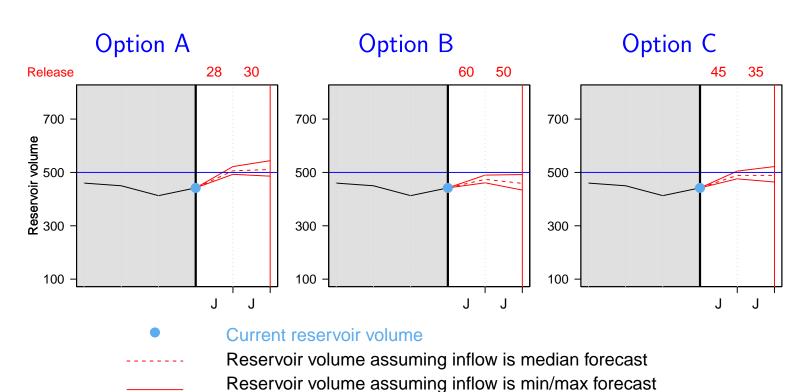
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

442 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

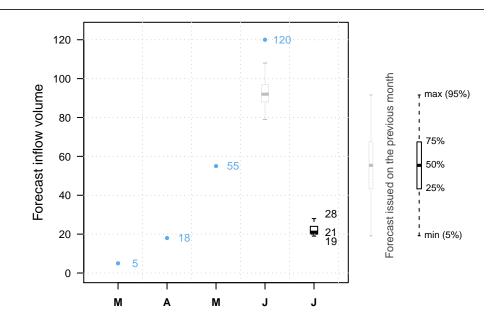
Can it be fixed?

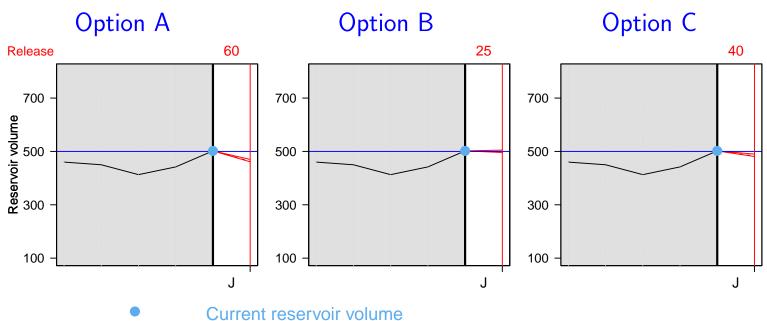
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's which release option see our volunteer will choose.

Reservoir volume assuming inflow is median forecast Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

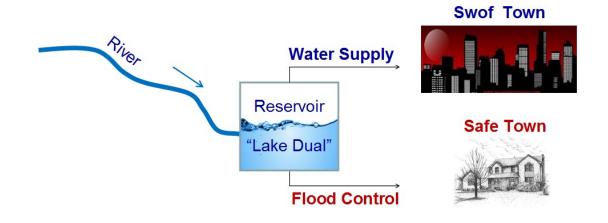
July inflow was: $22 Mm^3$

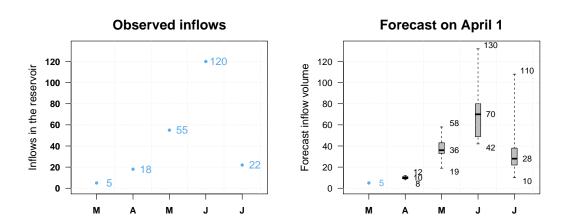
Our volunteer's July release was: $60 Mm^3$

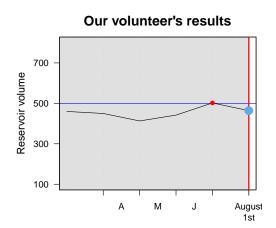
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 464 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

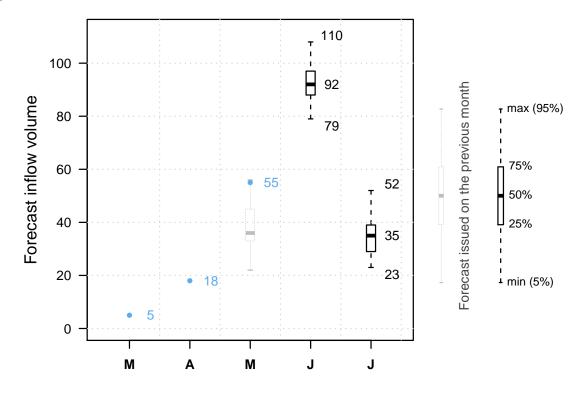
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

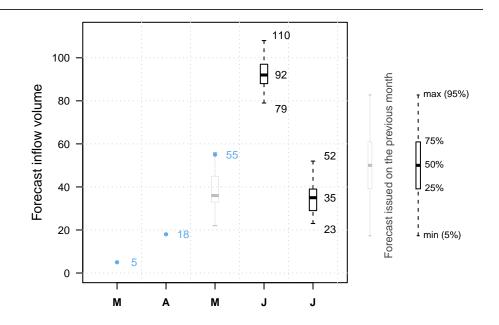


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 540 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

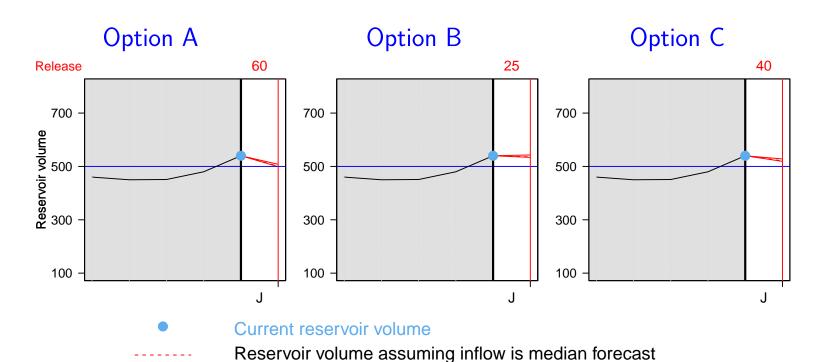
It is July 1st.

The reservoir is at $540 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

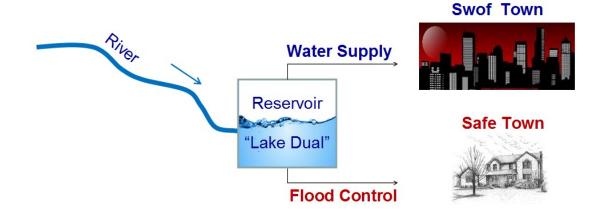
July inflow was: $22 Mm^3$

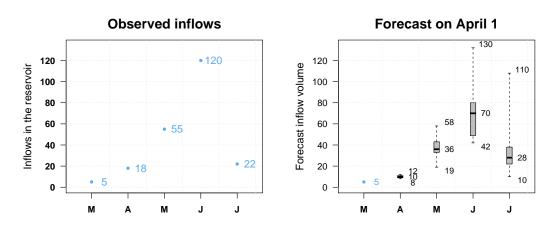
Our volunteer's July release was: $60 Mm^3$

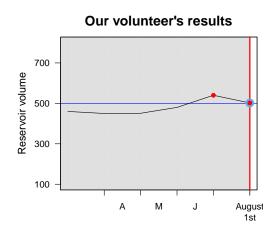
The volume on August 1st is therefore:

 $540 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 502 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

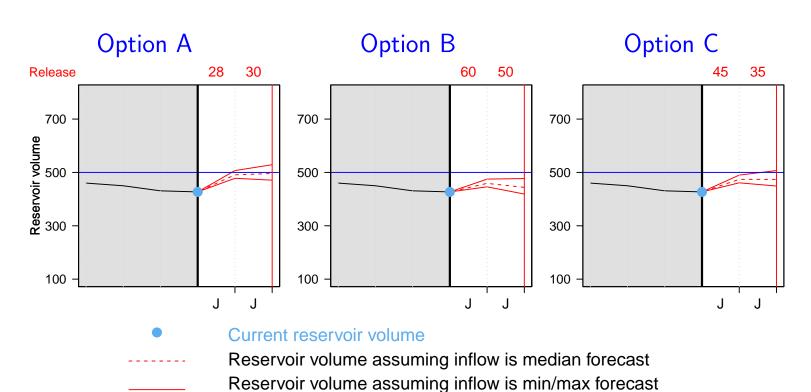
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

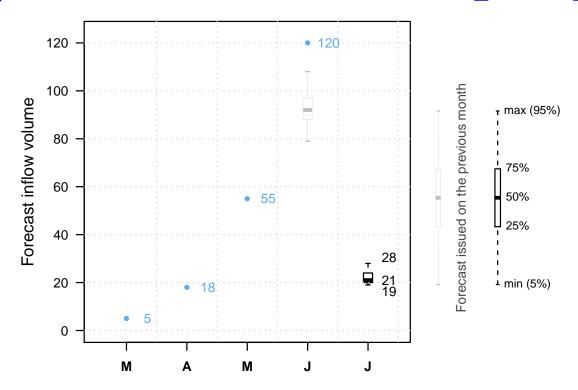
The volume on July 1st is therefore:

 $427 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

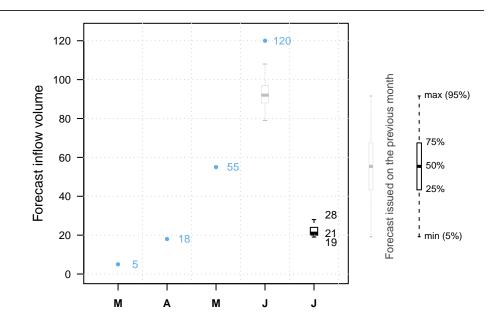


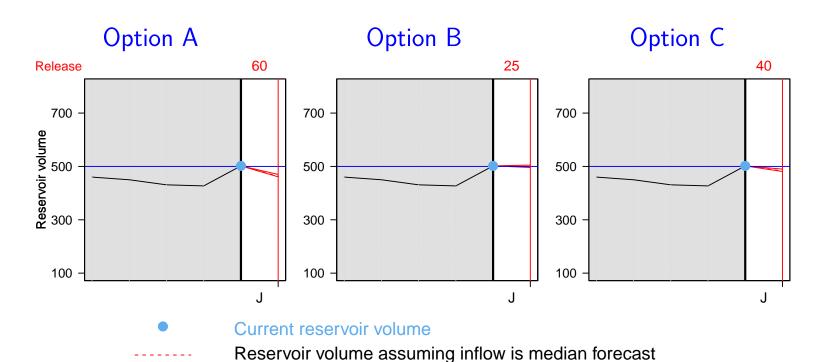
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

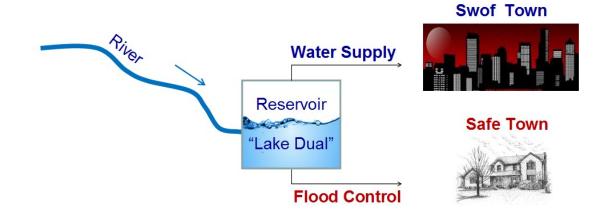
July inflow was: $22 Mm^3$

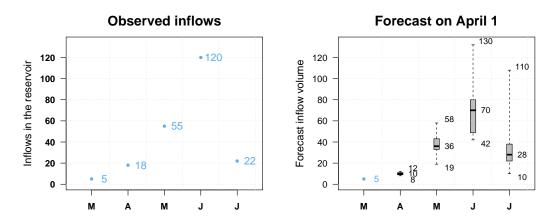
Our volunteer's July release was: $60 Mm^3$

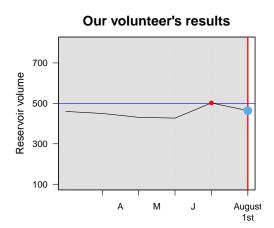
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 464 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

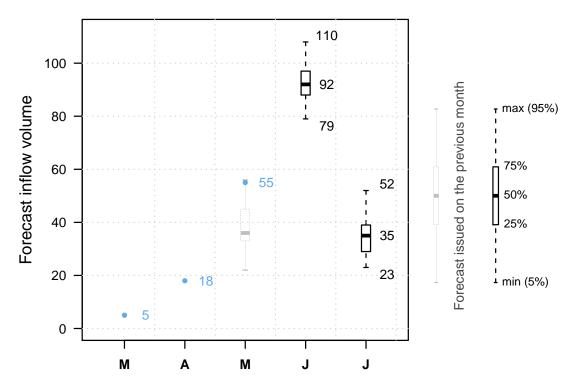
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

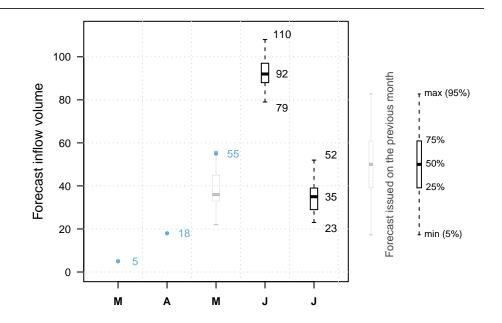


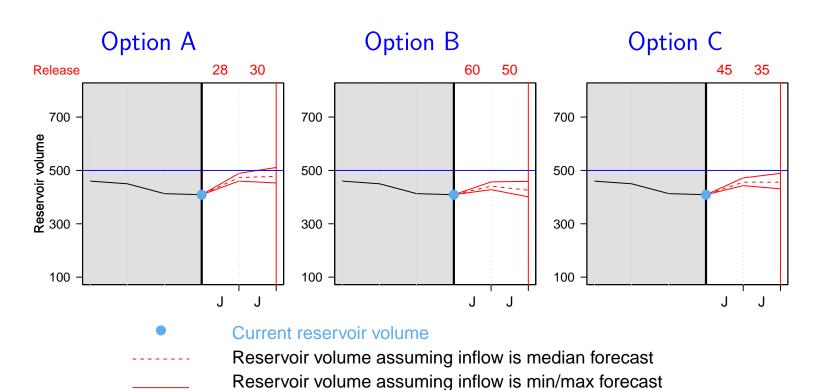
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

409
$$Mm^3 + 120 Mm^3 - 45 Mm^3 = 484 Mm^3$$

No overtop!

The volunteer still has a job!

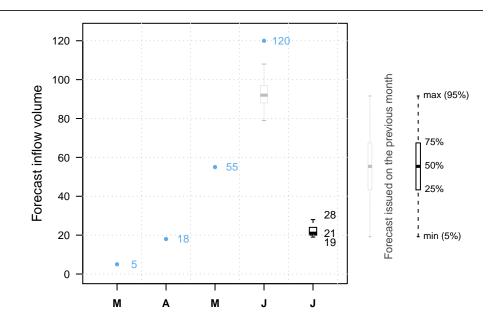
Let's go to the next forecast!

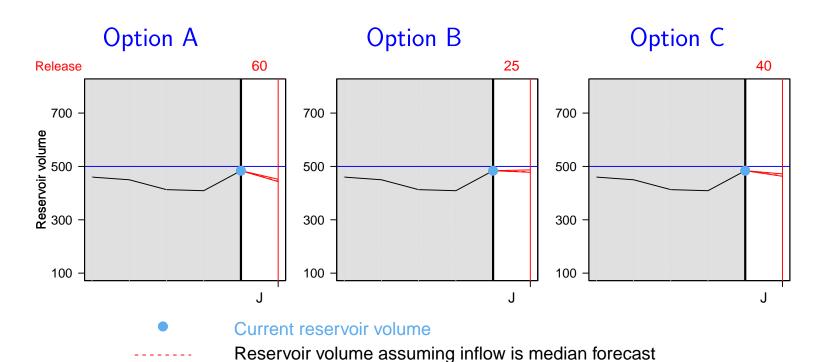
It is July 1st.

The reservoir is at 484 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

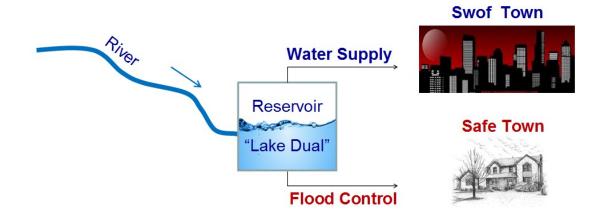
July inflow was: $22 Mm^3$

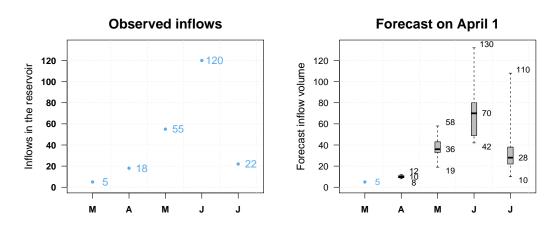
Our volunteer's July release was: $60 Mm^3$

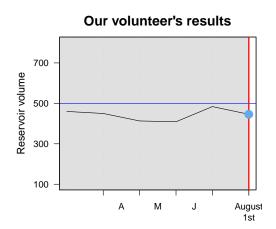
The volume on August 1st is therefore:

484
$$Mm^3 + 22 Mm^3 - 60 Mm^3 = 446 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

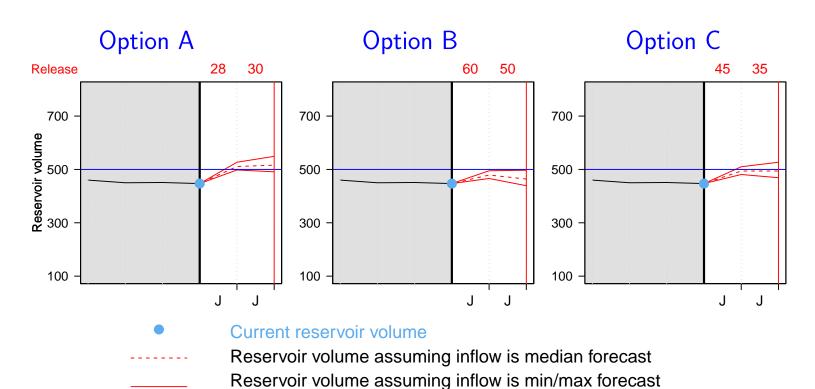
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 522 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

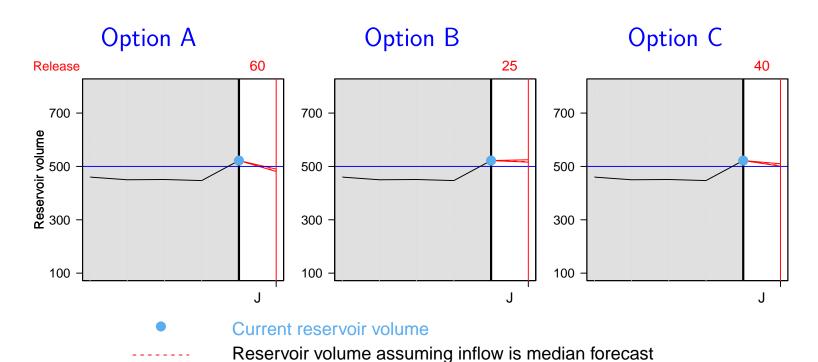
It is July 1st.

The reservoir is at $522 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

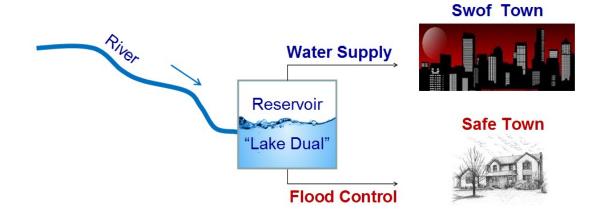
July inflow was: $22 Mm^3$

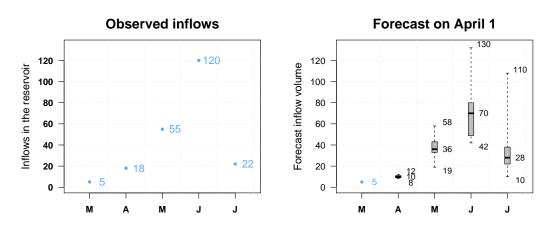
Our volunteer's July release was: $60 Mm^3$

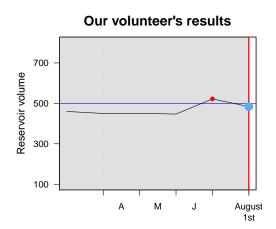
The volume on August 1st is therefore:

$$522 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 484 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

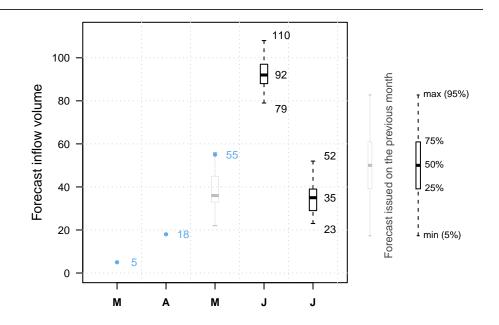
Let's go to the next forecast!

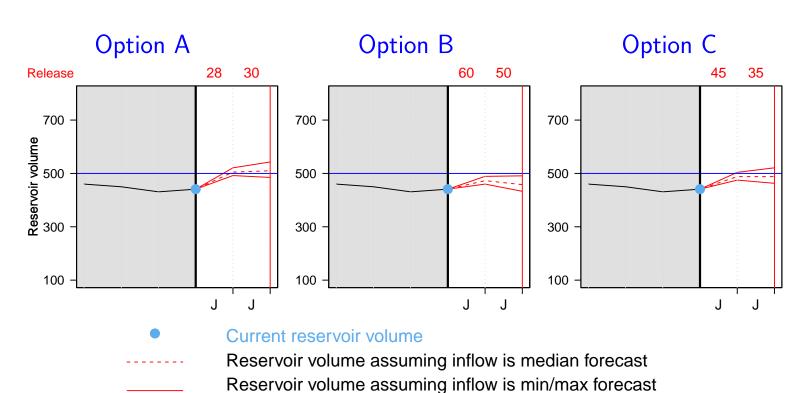
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 516 \ Mm^3$

Overtop!

The volunteer got fired!

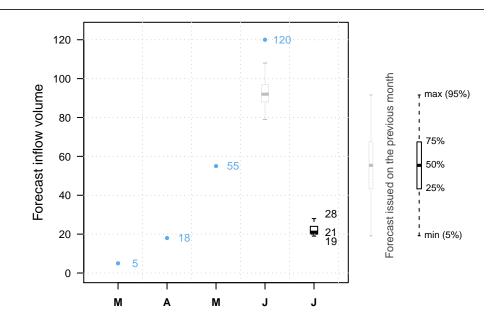
Can it be fixed?

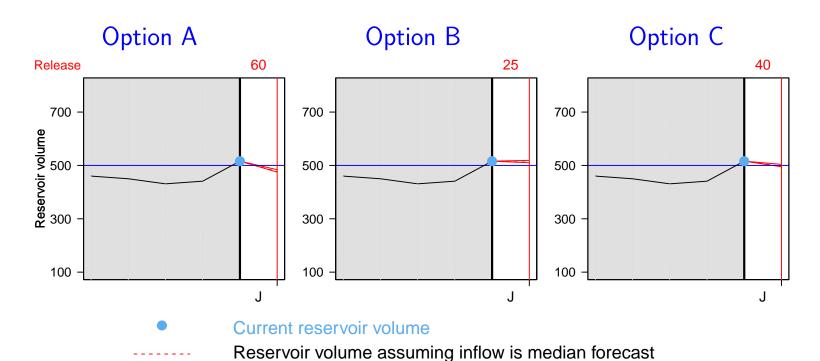
It is July 1st.

The reservoir is at $516 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

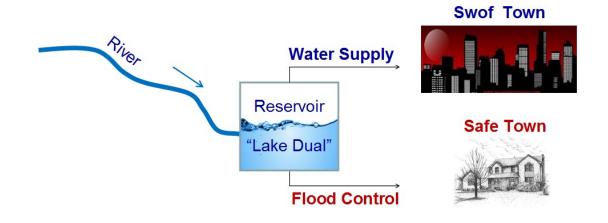
July inflow was: $22 Mm^3$

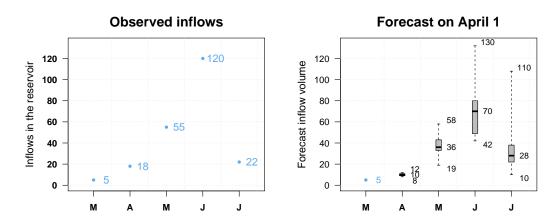
Our volunteer's July release was: $60 Mm^3$

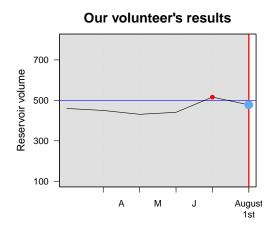
The volume on August 1st is therefore:

$$516 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 478 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

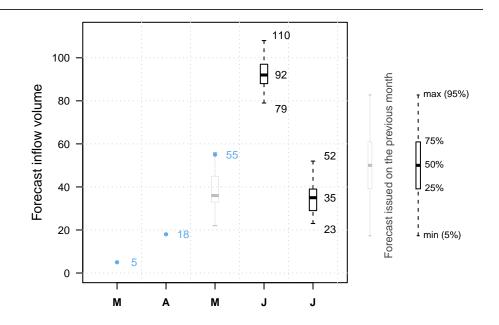
Let's go to the next forecast!

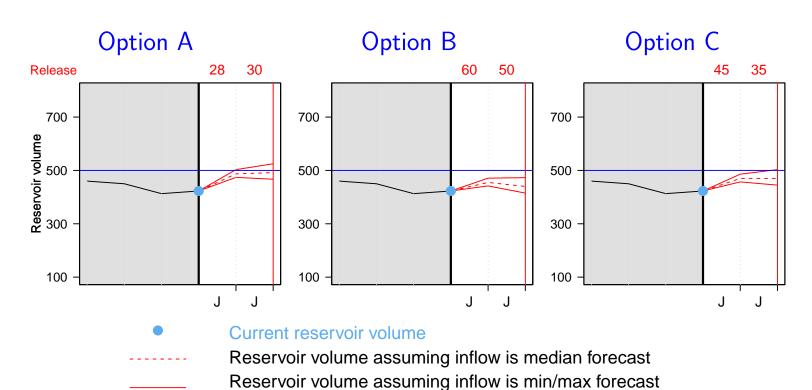
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

423
$$Mm^3 + 120 Mm^3 - 45 Mm^3 = 498 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

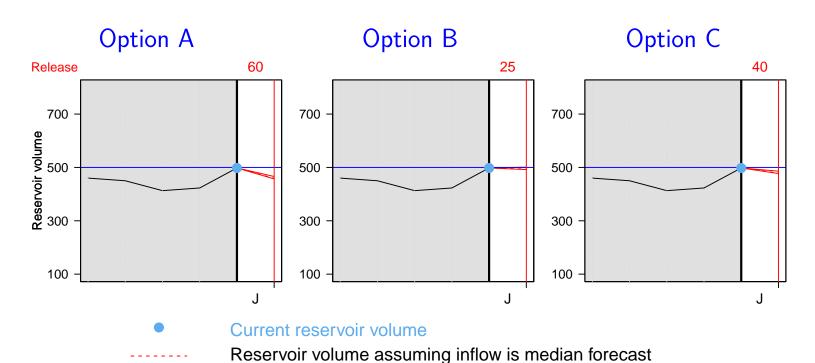
It is July 1st.

The reservoir is at 498 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

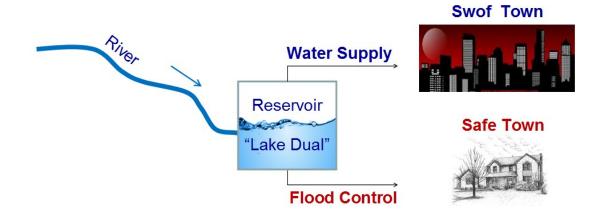
July inflow was: $22 Mm^3$

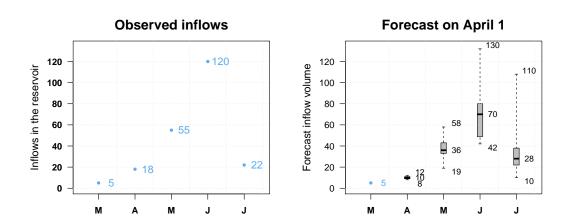
Our volunteer's July release was: $60 Mm^3$

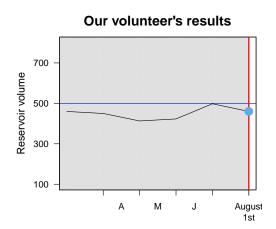
The volume on August 1st is therefore:

498
$$Mm^3 + 22 Mm^3 - 60 Mm^3 = 460 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

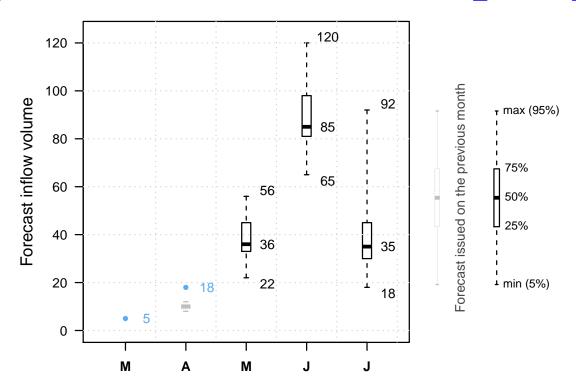
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

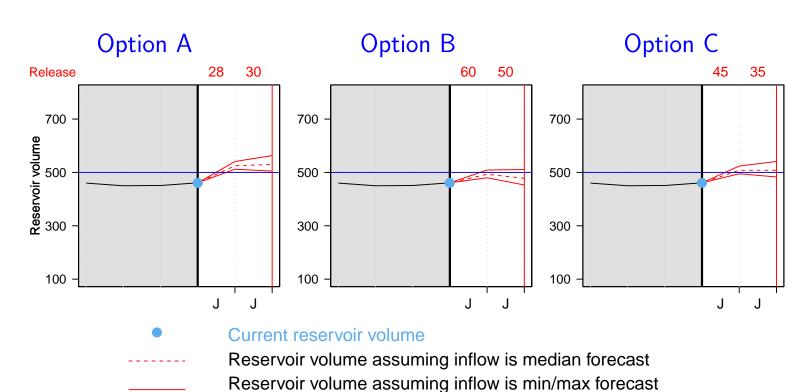
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

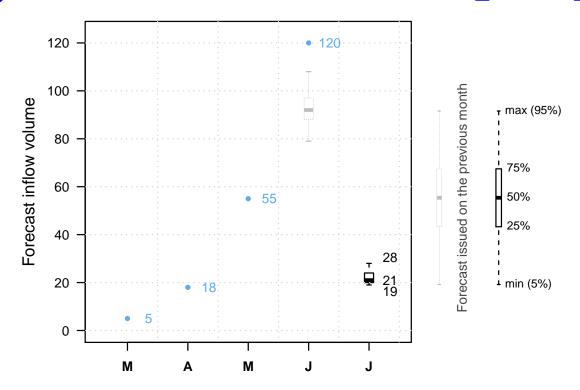
The volume on July 1st is therefore:

 $461 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 536 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



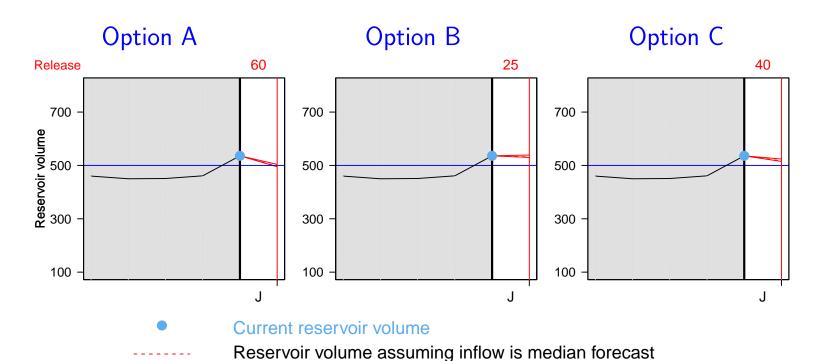
It is July 1st.

The reservoir is at $536 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

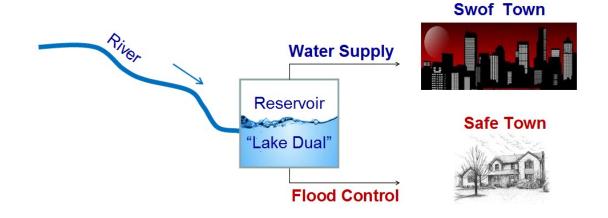
July inflow was: $22 Mm^3$

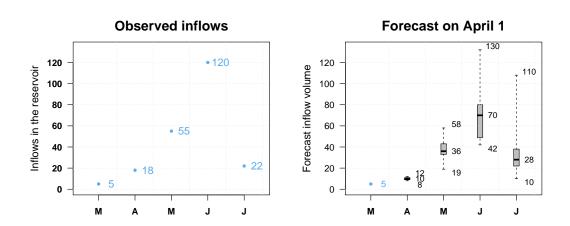
Our volunteer's July release was: $60 Mm^3$

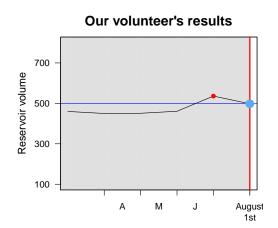
The volume on August 1st is therefore:

$$536 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 498 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

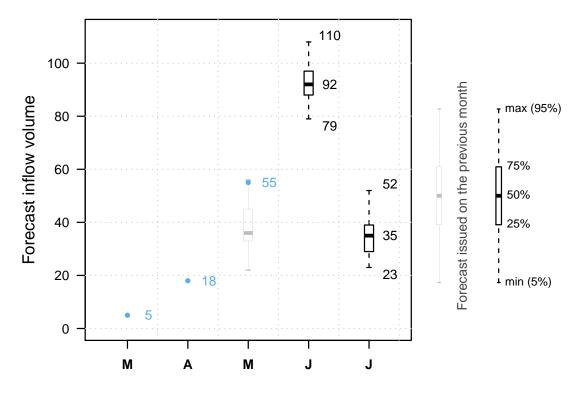
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

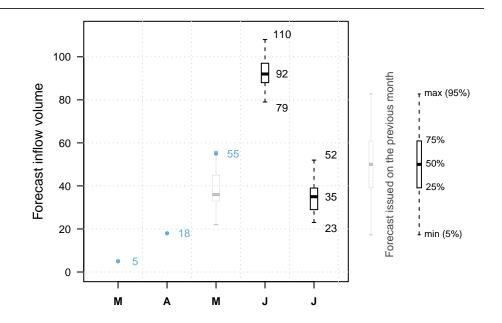


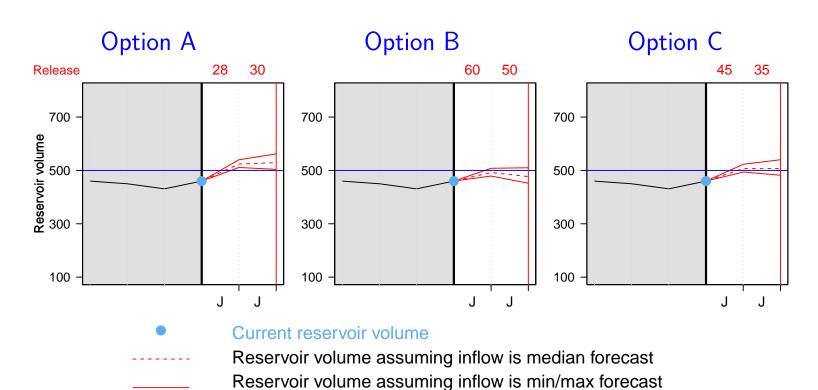
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 535 Mm^3$

Overtop!

The volunteer got fired!

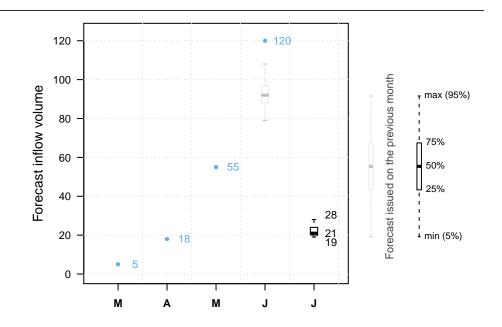
Can it be fixed?

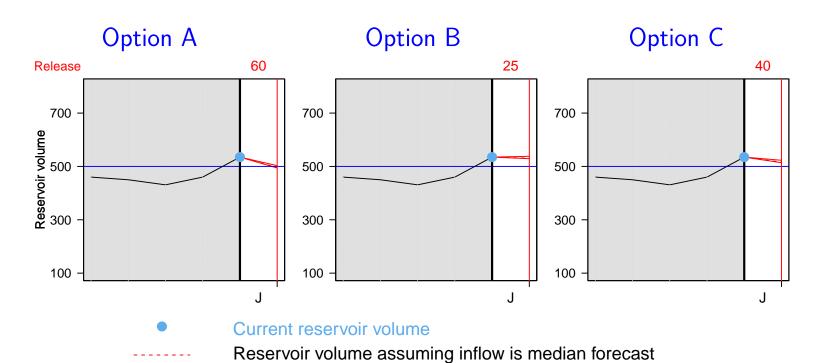
It is July 1st.

The reservoir is at $535 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

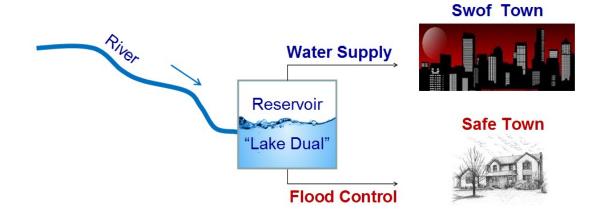
July inflow was: $22 Mm^3$

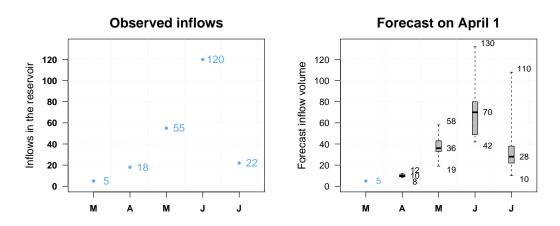
Our volunteer's July release was: $60 Mm^3$

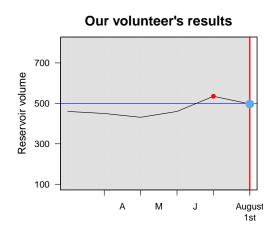
The volume on August 1st is therefore:

$$535 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 497 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

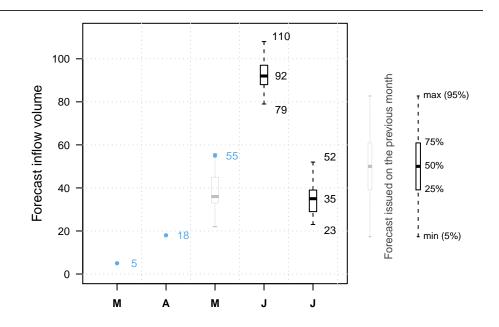
Let's go to the next forecast!

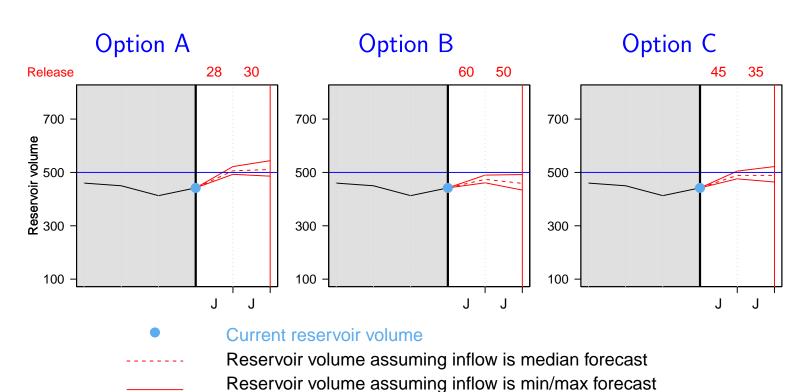
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

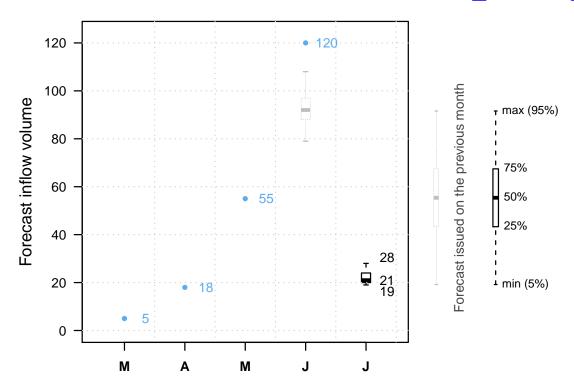
The volume on July 1st is therefore:

442
$$Mm^3 + 120 Mm^3 - 45 Mm^3 = 517 Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

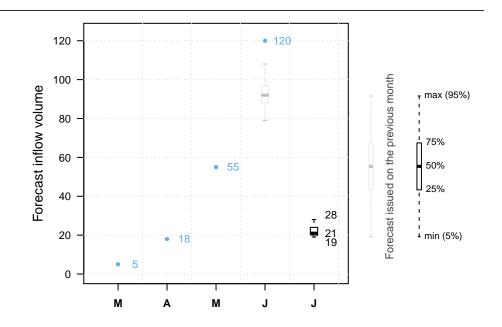


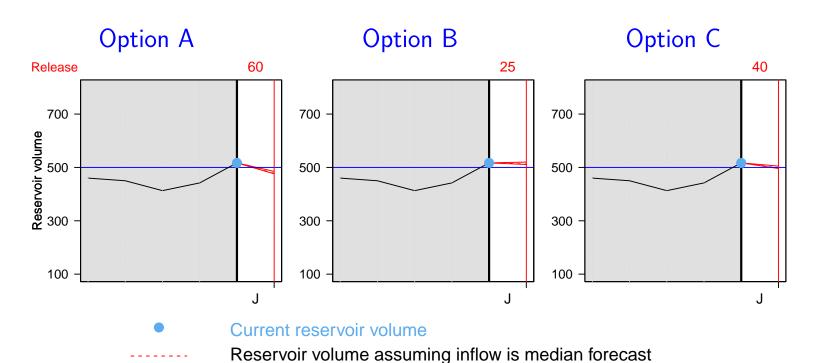
It is July 1st.

The reservoir is at $517 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

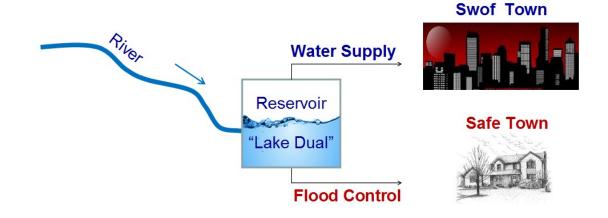
July inflow was: $22 Mm^3$

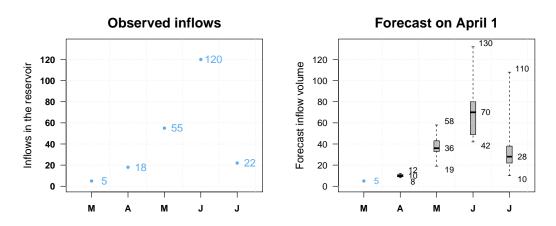
Our volunteer's July release was: $60 Mm^3$

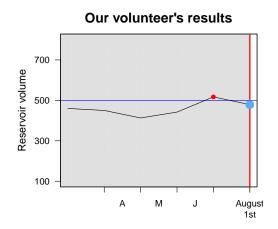
The volume on August 1st is therefore:

$$517 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 479 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

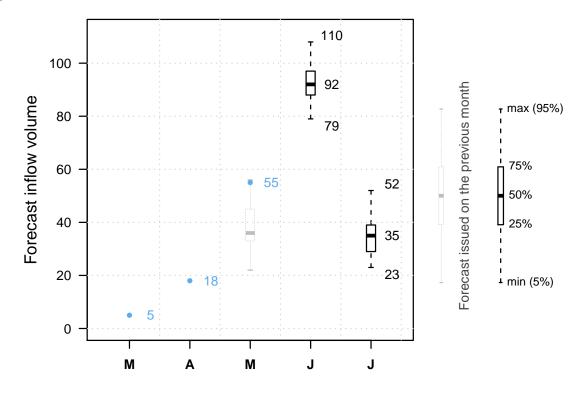
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

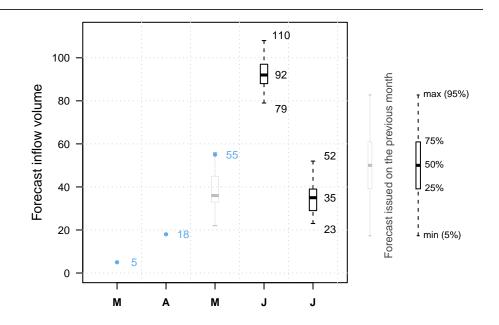


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 555 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

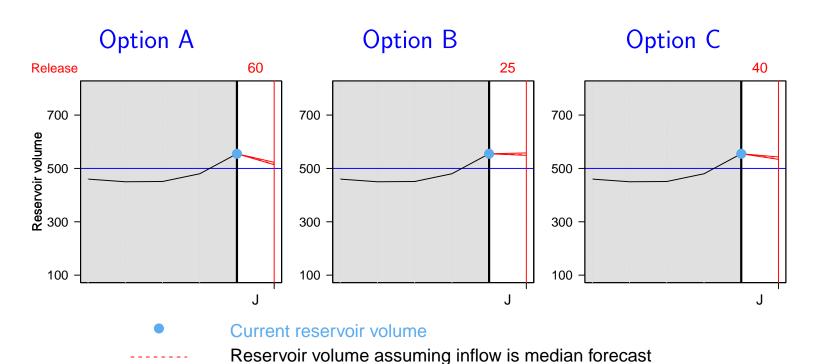
It is July 1st.

The reservoir is at $555 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

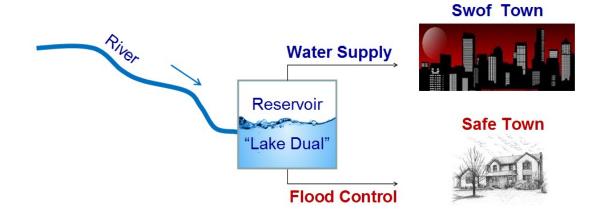
July inflow was: $22 Mm^3$

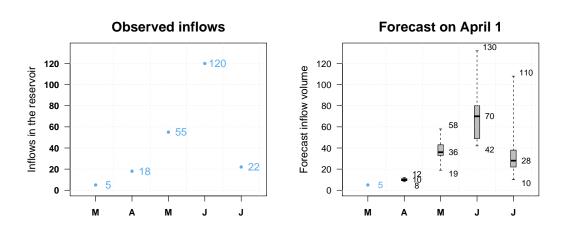
Our volunteer's July release was: $60 Mm^3$

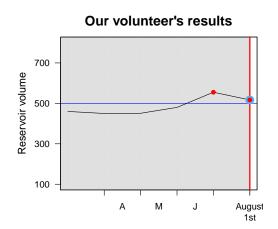
The volume on August 1st is therefore:

 $555 \ Mm^3 + 22 \ Mm^3 - 60 \ Mm^3 = 517 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

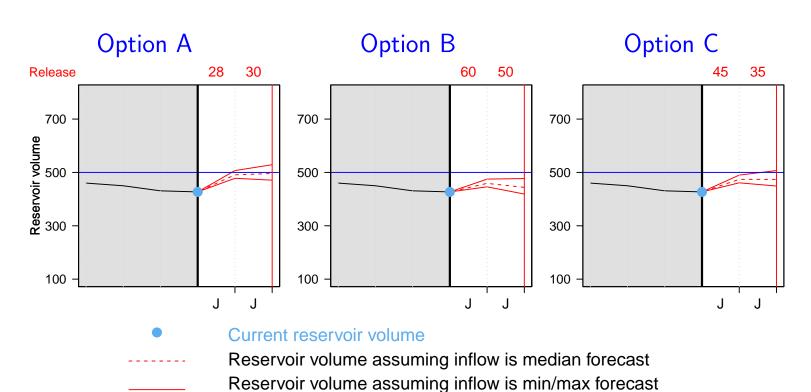
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

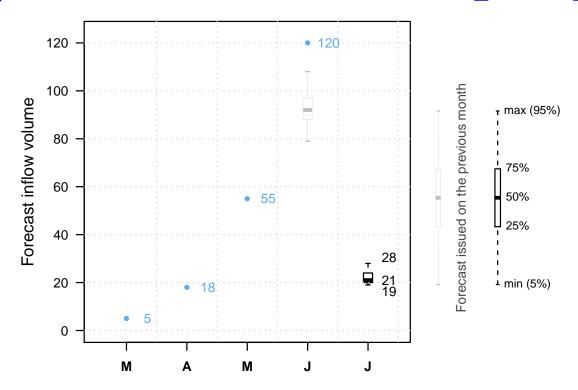
The volume on July 1st is therefore:

 $427 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 519 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

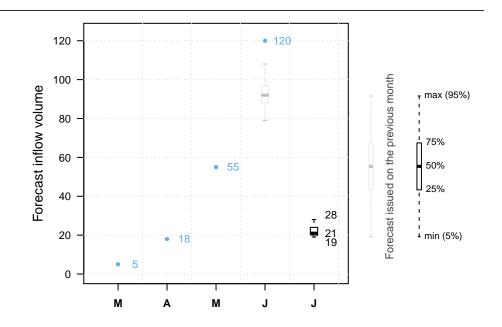


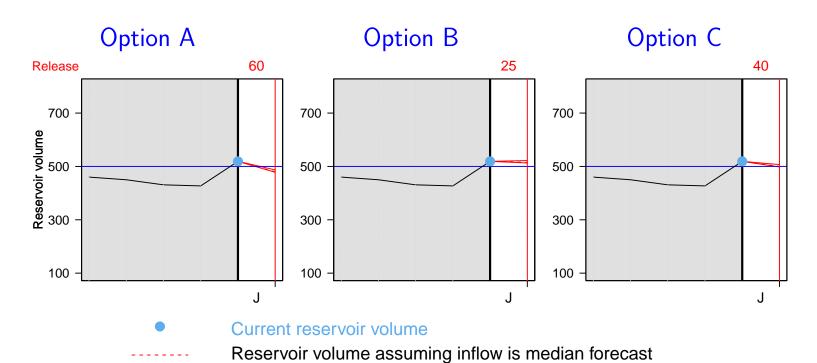
It is July 1st.

The reservoir is at $519 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

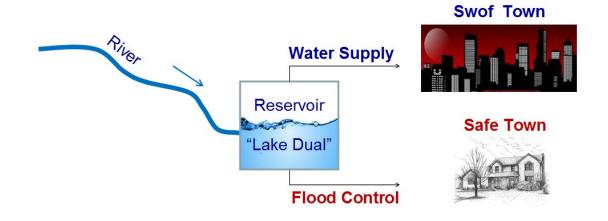
July inflow was: $22 Mm^3$

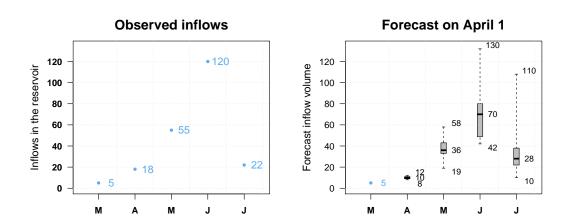
Our volunteer's July release was: $25 Mm^3$

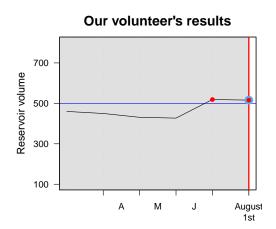
The volume on August 1st is therefore:

 $519 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 516 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

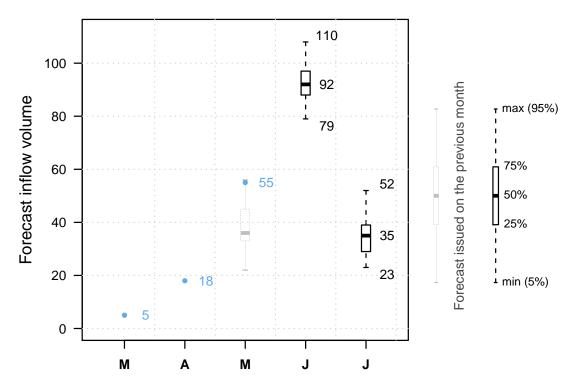
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

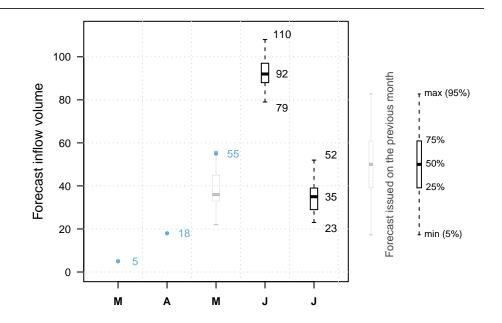


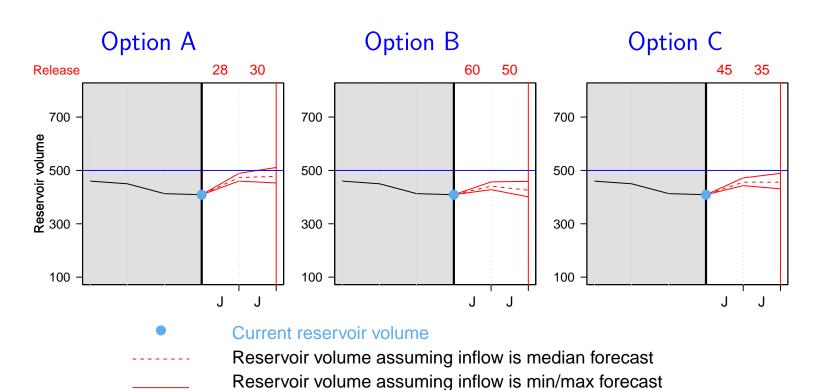
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

 $409 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

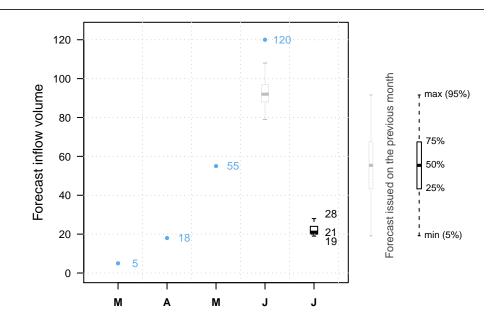
Can it be fixed?

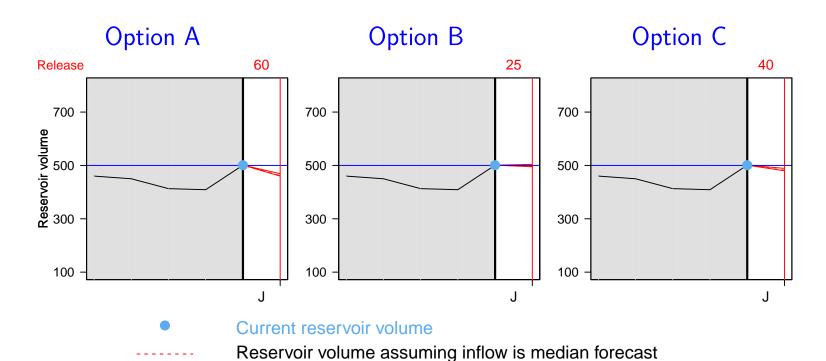
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

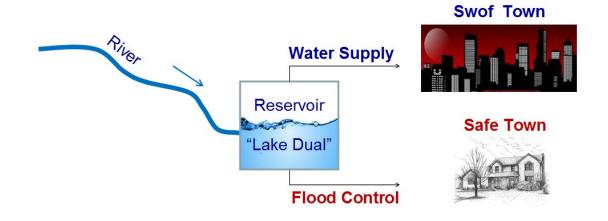
July inflow was: $22 Mm^3$

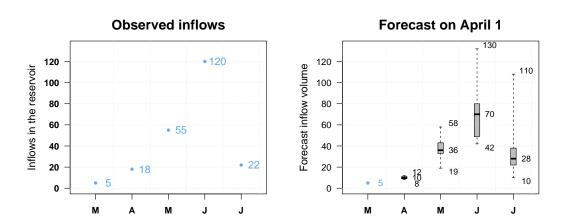
Our volunteer's July release was: $25 Mm^3$

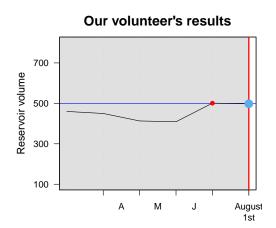
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 498 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

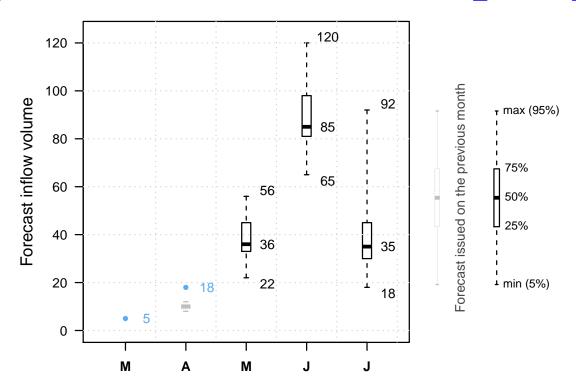
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

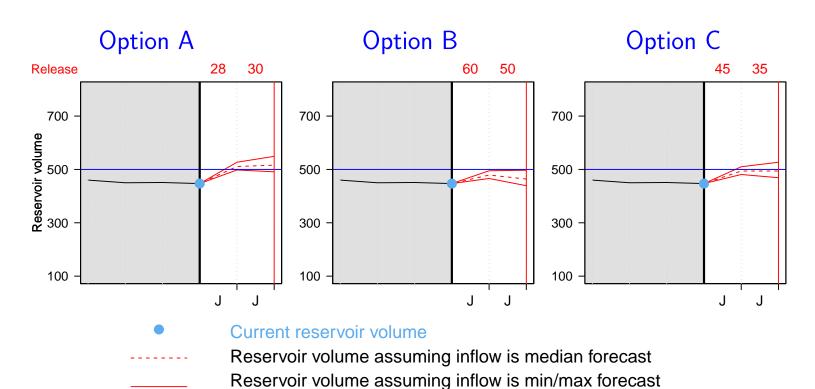
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 539 Mm^3$

Overtop!

The volunteer got fired!

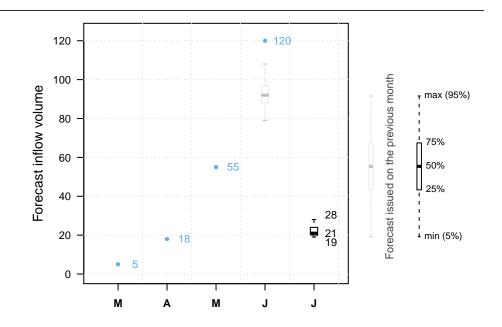
Can it be fixed?

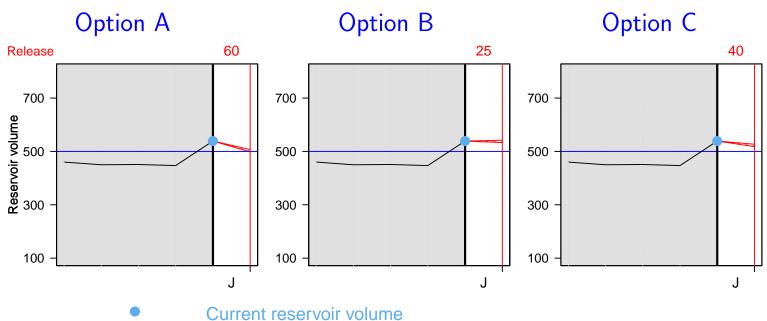
It is July 1st.

The reservoir is at $539 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's which release option see our volunteer will choose.

Reservoir volume assuming inflow is median forecast Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

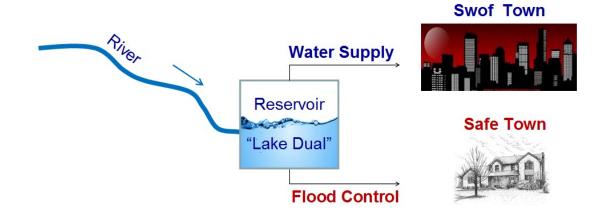
July inflow was: $22 Mm^3$

Our volunteer's July release was: $25 Mm^3$

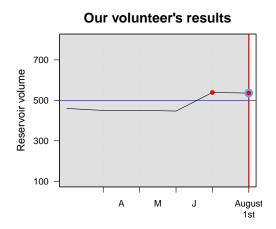
The volume on August 1st is therefore:

 $539 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 536 \ Mm^3$

Overtop!


The volunteer did not get the job back!

NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

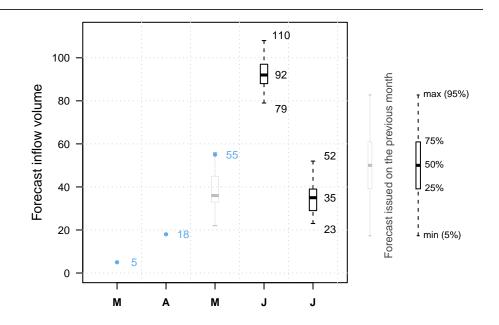
Let's go to the next forecast!

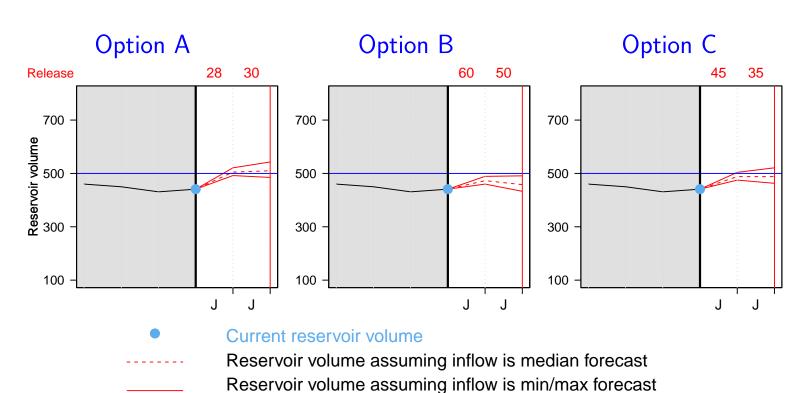
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

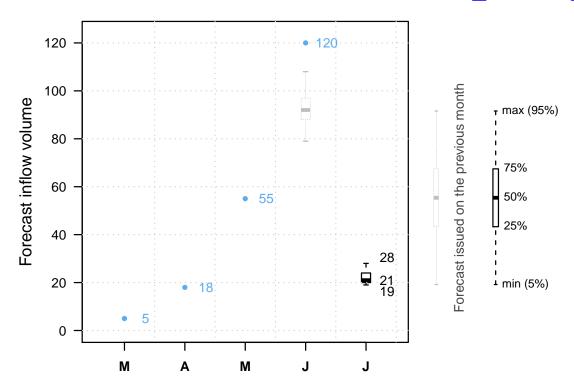
The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 533 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

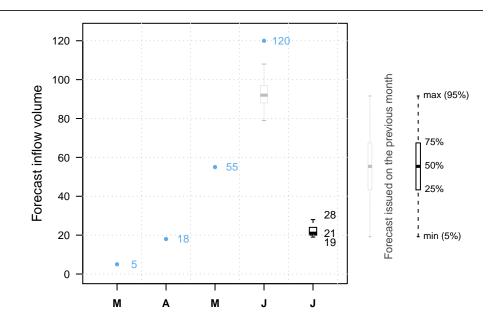


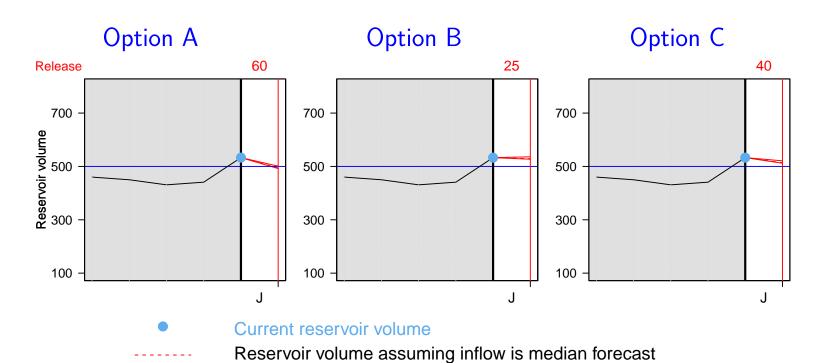
It is July 1st.

The reservoir is at $533 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

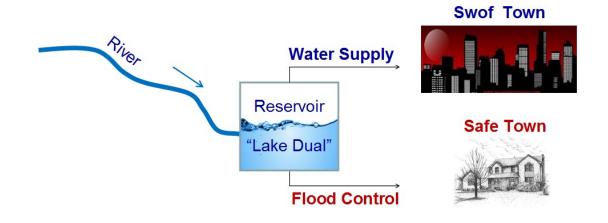
July inflow was: $22 Mm^3$

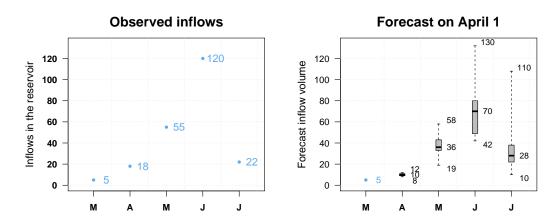
Our volunteer's July release was: $25 Mm^3$

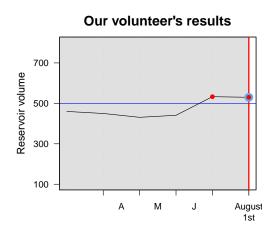
The volume on August 1st is therefore:

 $533 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 530 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

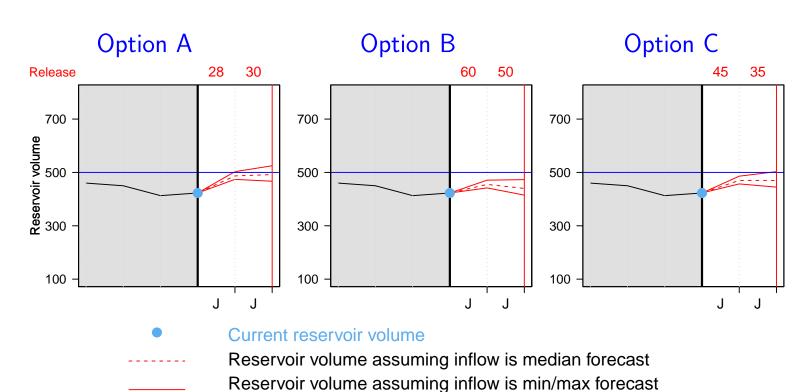
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

423
$$Mm^3 + 120 Mm^3 - 28 Mm^3 = 515 Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

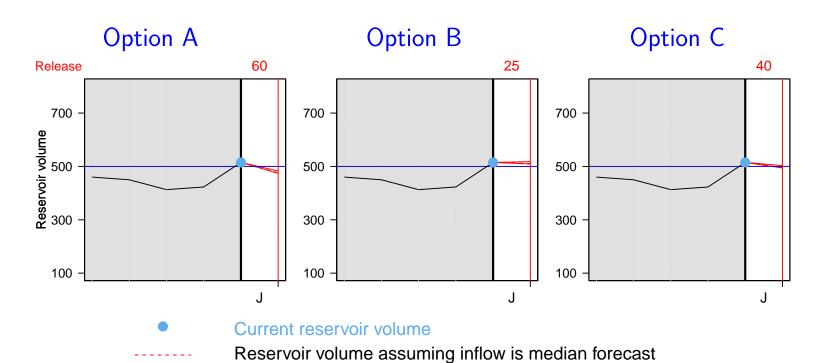
It is July 1st.

The reservoir is at $515 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

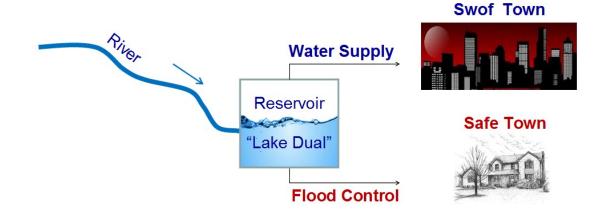
July inflow was: $22 Mm^3$

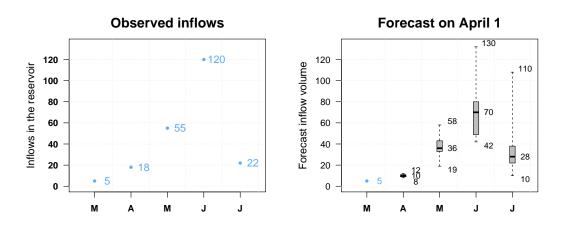
Our volunteer's July release was: $25 Mm^3$

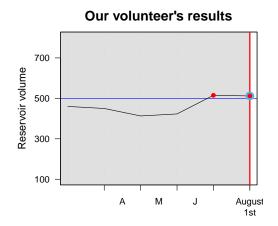
The volume on August 1st is therefore:

 $515 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 512 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

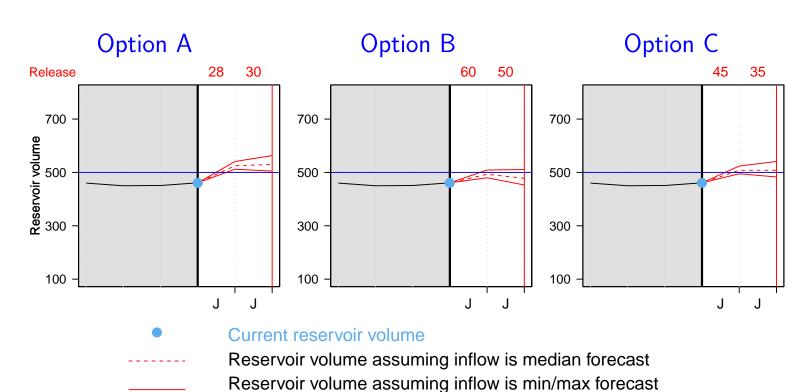
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

$$461 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 553 \ Mm^3$$

Overtop!

The volunteer got fired!

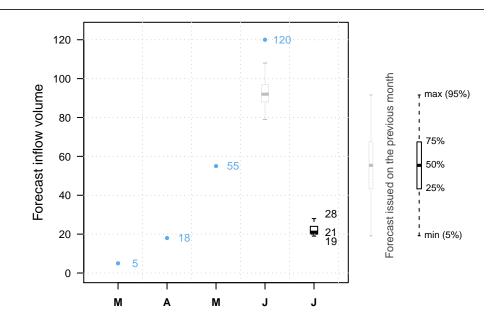
Can it be fixed?

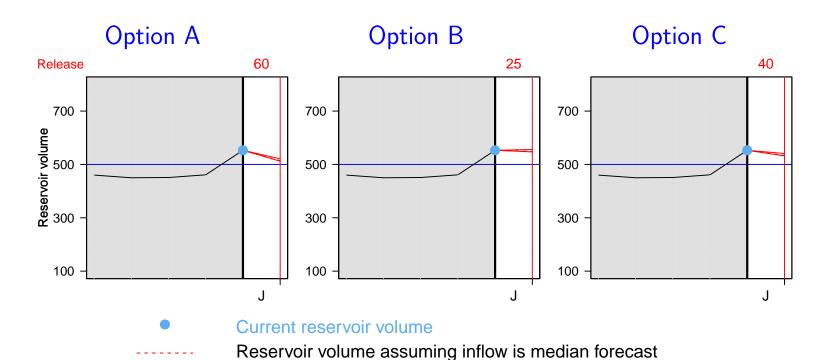
It is July 1st.

The reservoir is at $553 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

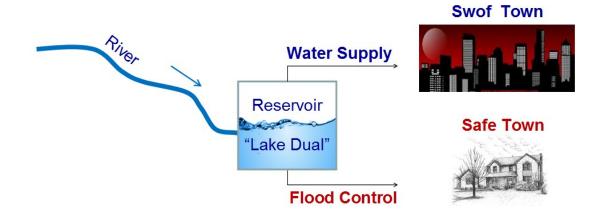
July inflow was: $22 Mm^3$

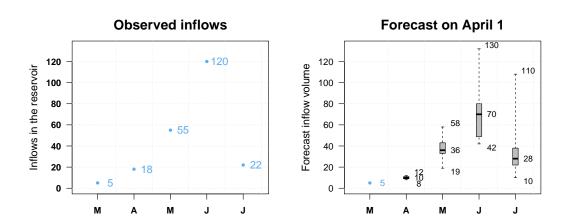
Our volunteer's July release was: $25 Mm^3$

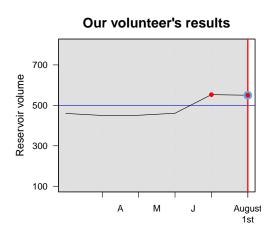
The volume on August 1st is therefore:

 $553 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 550 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

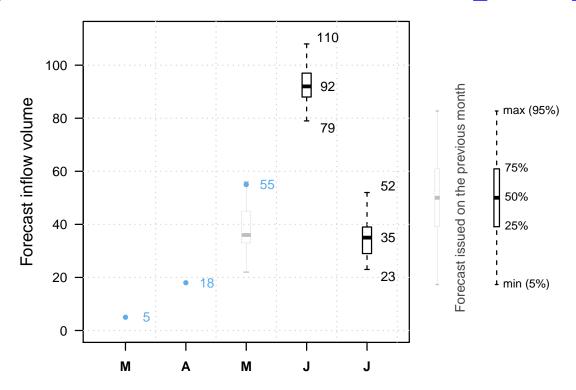
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

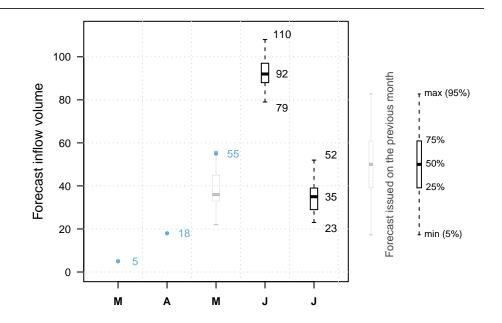


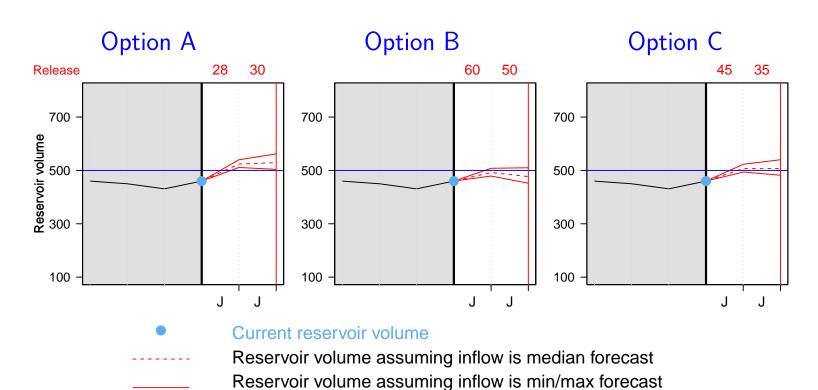
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 552 Mm^3$

Overtop!

The volunteer got fired!

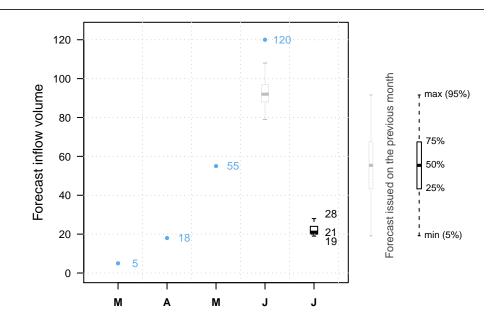
Can it be fixed?

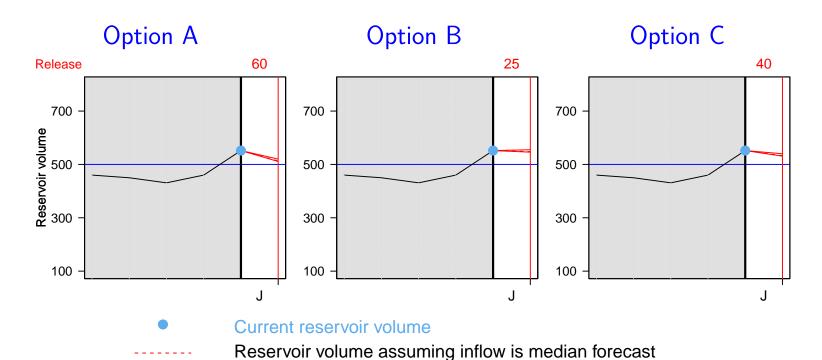
It is July 1st.

The reservoir is at $552 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

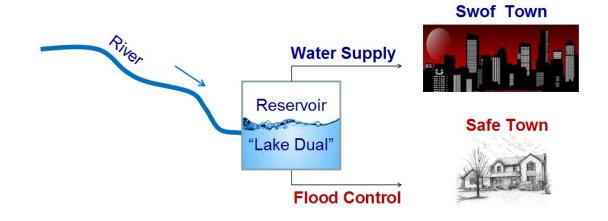
July inflow was: $22 Mm^3$

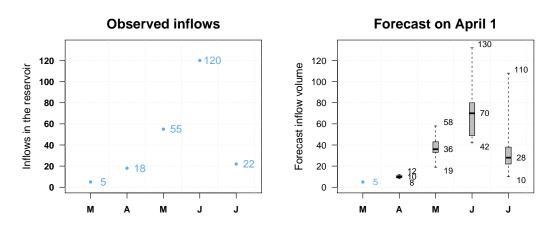
Our volunteer's July release was: $25 Mm^3$

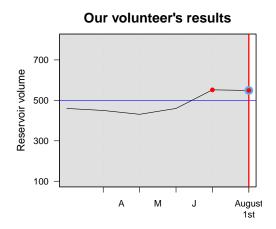
The volume on August 1st is therefore:

 $552 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 549 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

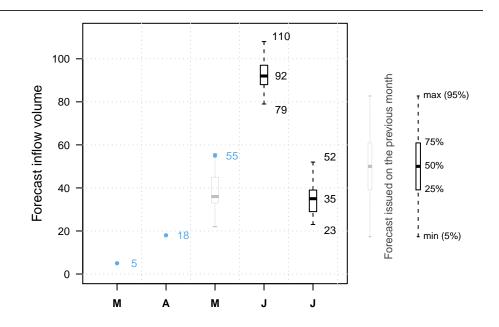
Let's go to the next forecast!

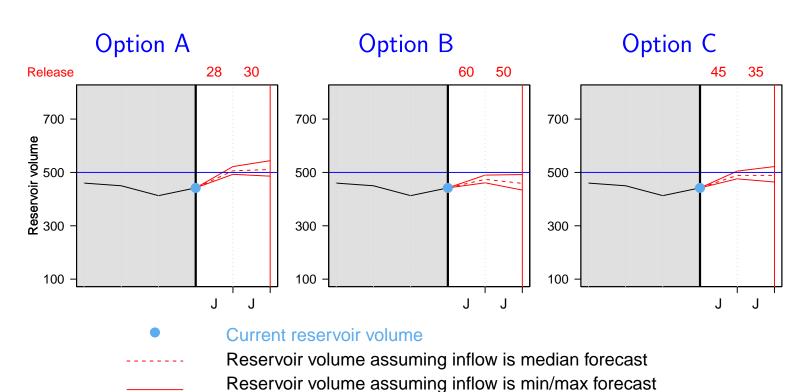
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

442
$$Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

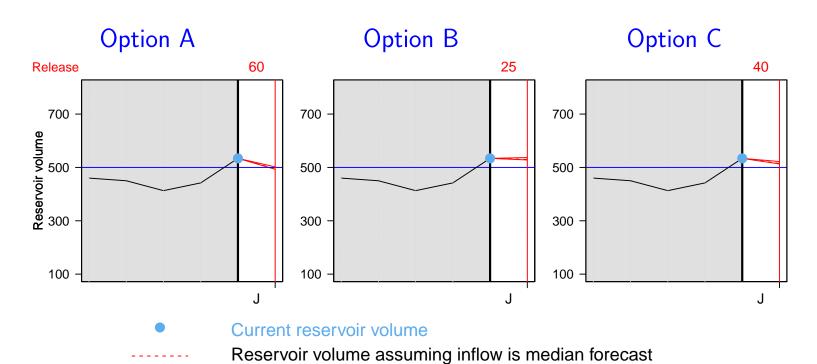
It is July 1st.

The reservoir is at $534 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

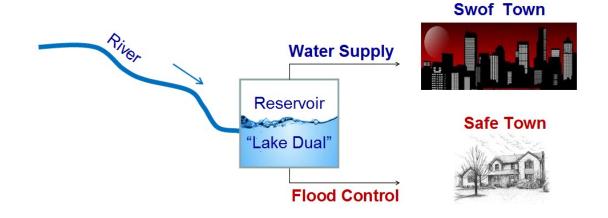
July inflow was: $22 Mm^3$

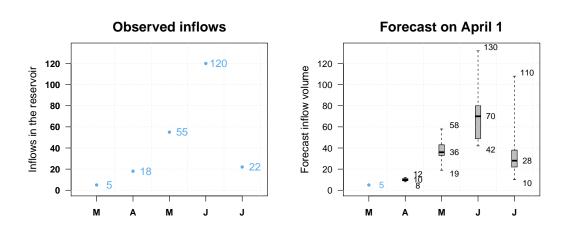
Our volunteer's July release was: $25 Mm^3$

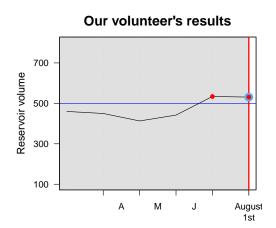
The volume on August 1st is therefore:

 $534 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 531 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

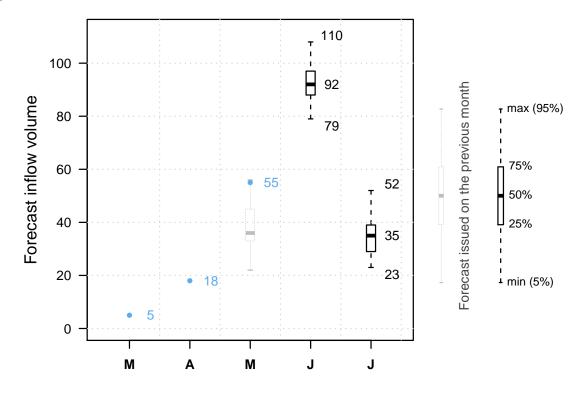
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

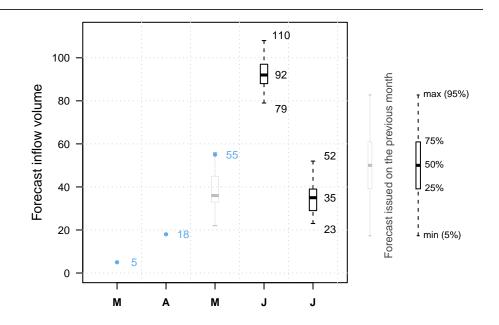


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 572 \ Mm^3$

Overtop!

The volunteer got fired!

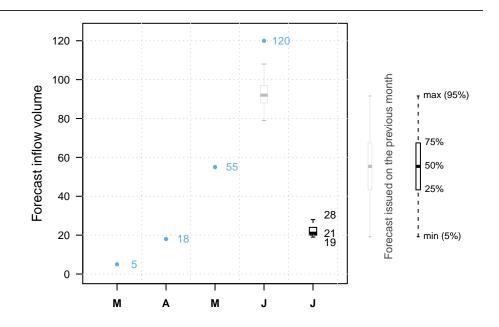
Can it be fixed?

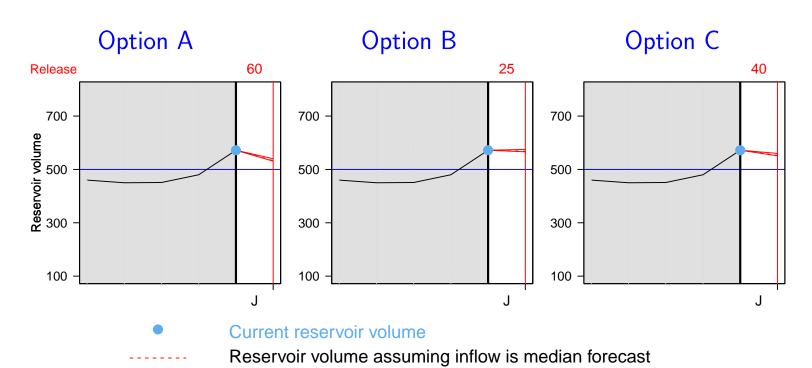
It is July 1st.

The reservoir is at $572 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

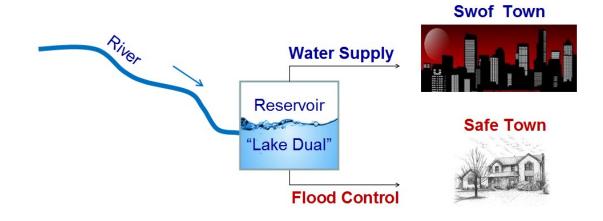
July inflow was: $22 Mm^3$

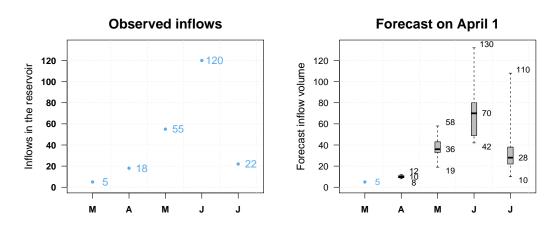
Our volunteer's July release was: $25 Mm^3$

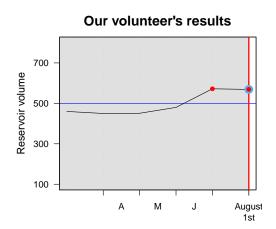
The volume on August 1st is therefore:

 $572 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 569 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

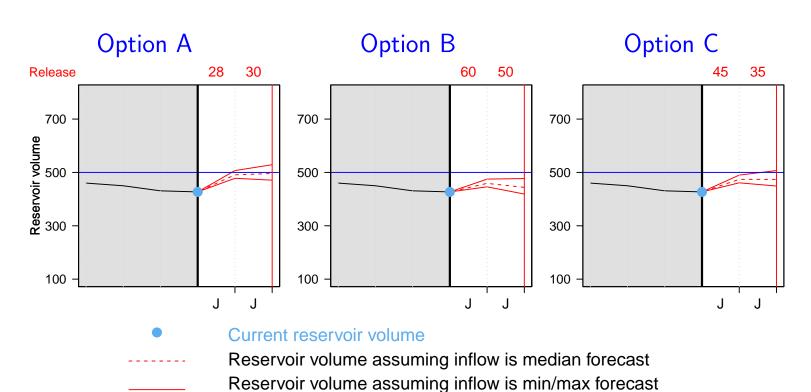
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

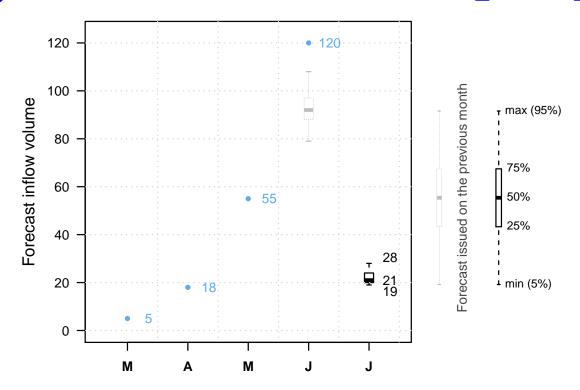
The volume on July 1st is therefore:

427
$$Mm^3 + 120 Mm^3 - 60 Mm^3 = 487 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

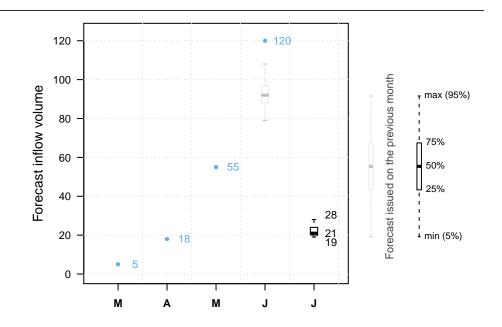


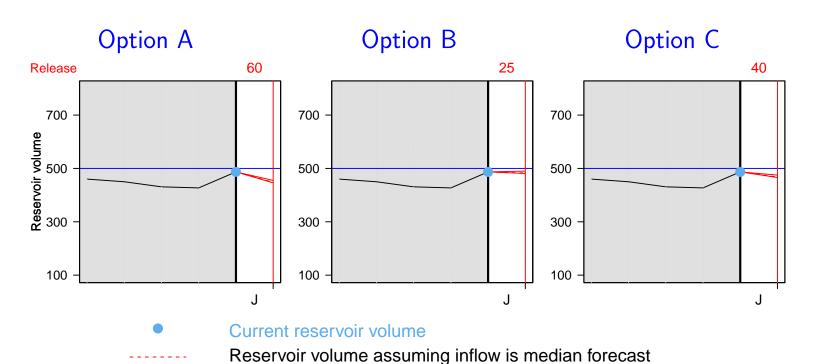
It is July 1st.

The reservoir is at 487 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

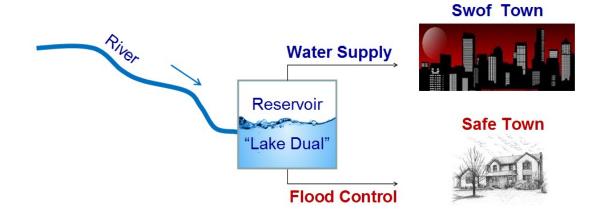
July inflow was: $22 Mm^3$

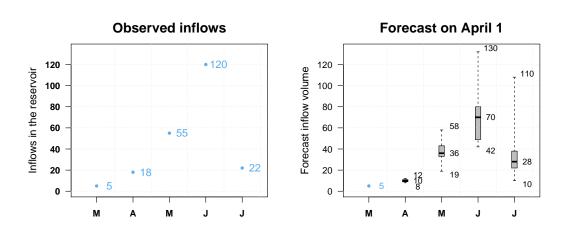
Our volunteer's July release was: $25 Mm^3$

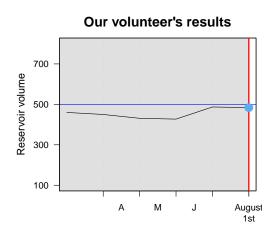
The volume on August 1st is therefore:

$$487 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 484 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

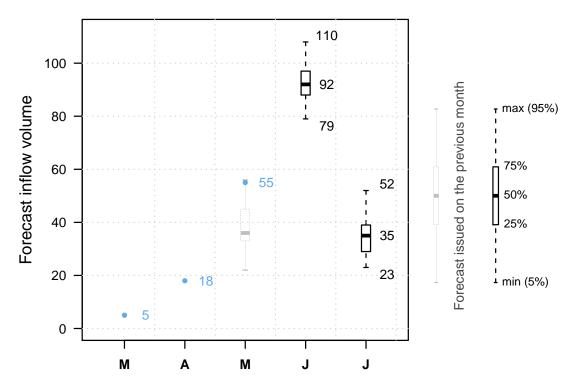
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

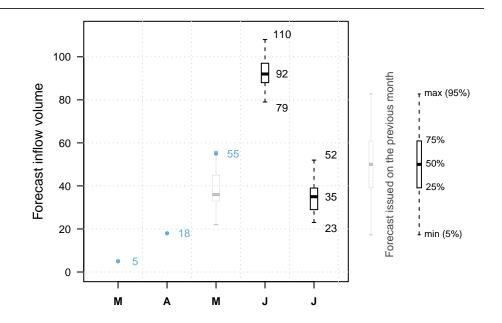


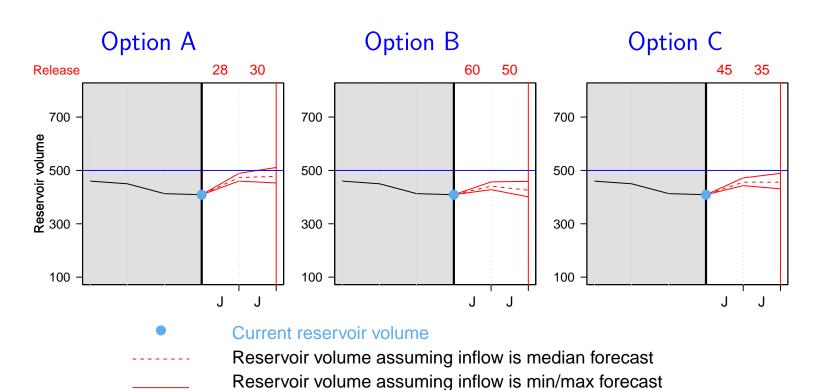
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

$$409 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$$

No overtop!

The volunteer still has a job!

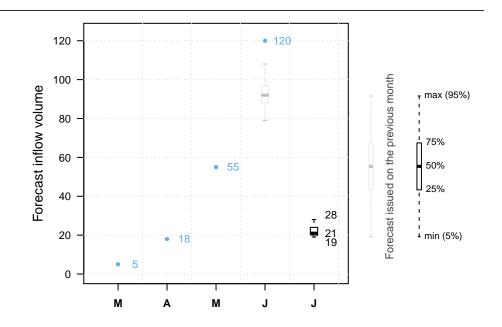
Let's go to the next forecast!

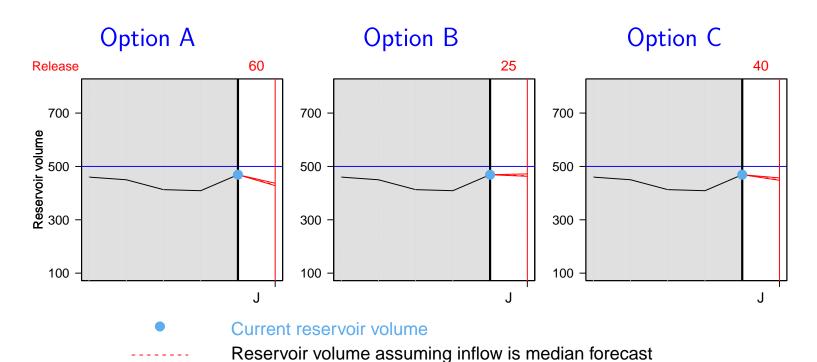
It is July 1st.

The reservoir is at 469 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

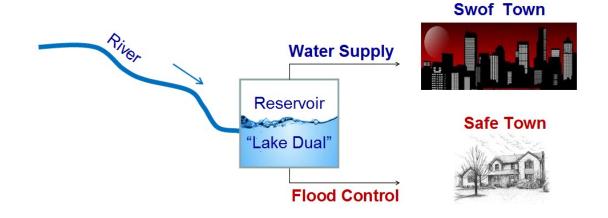
July inflow was: $22 Mm^3$

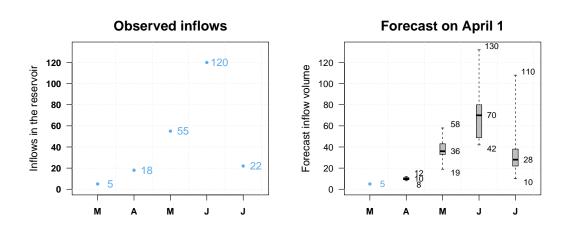
Our volunteer's July release was: $25 Mm^3$

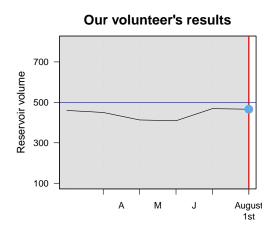
The volume on August 1st is therefore:

$$469 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 466 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

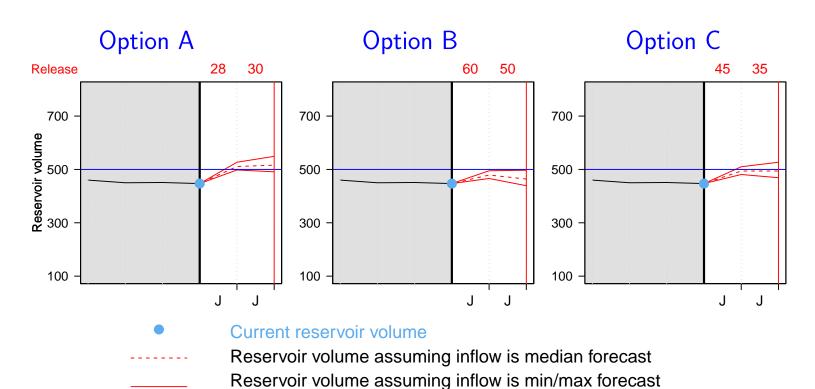
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 507 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

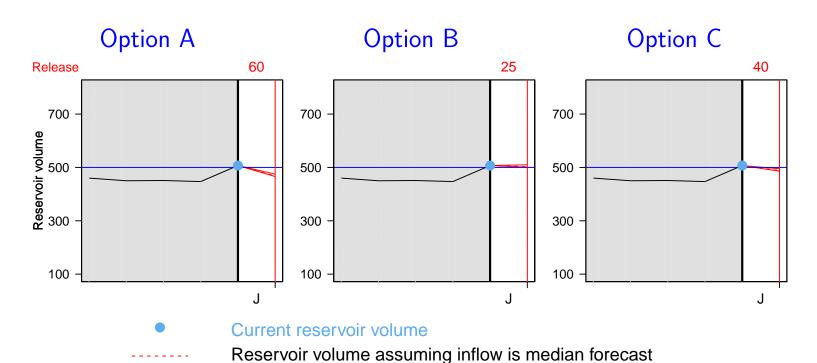
It is July 1st.

The reservoir is at $507 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

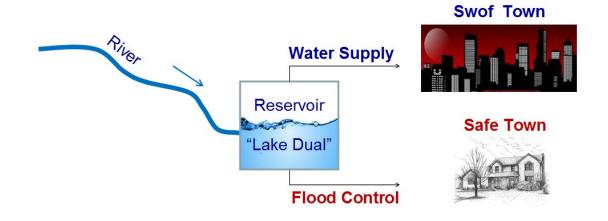
July inflow was: $22 Mm^3$

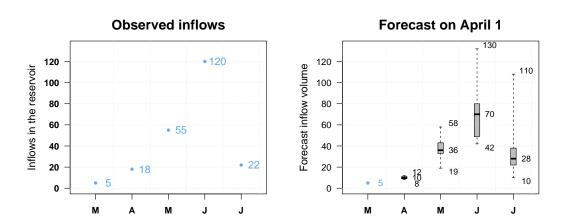
Our volunteer's July release was: $25 Mm^3$

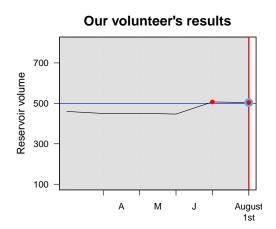
The volume on August 1st is therefore:

 $507 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 504 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

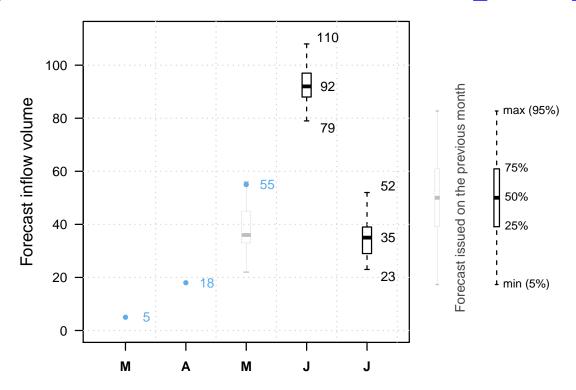
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

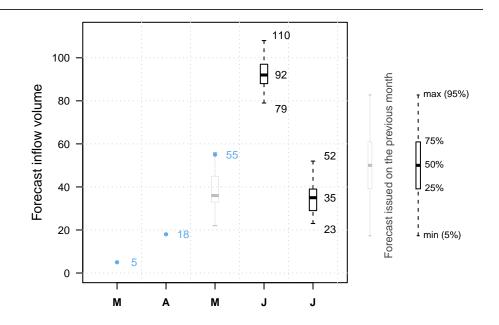


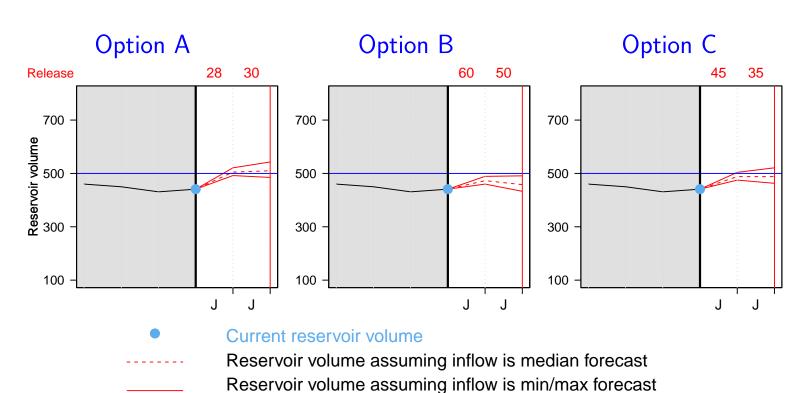
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3




Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

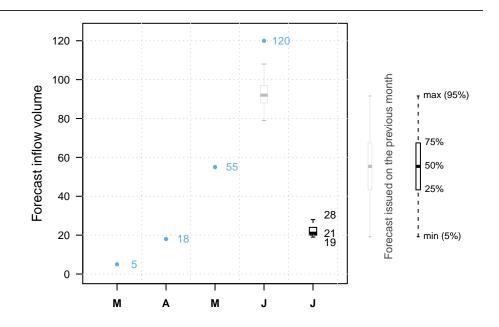
Can it be fixed?

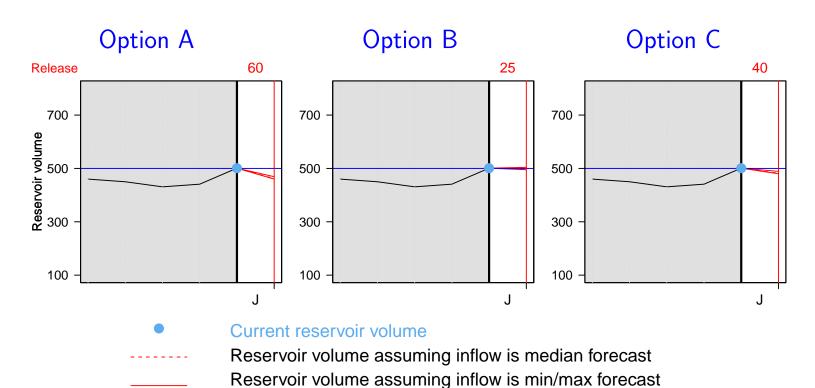
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3




Reservoir should be close to 500 Mm^3 on August 1st.

It is July 1st.

And our volunteer?

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

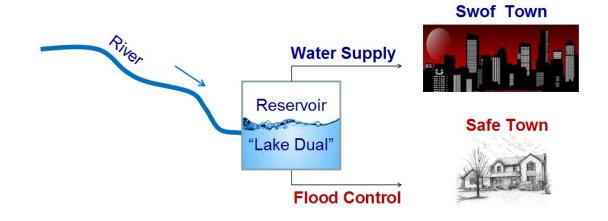
July inflow was: $22 Mm^3$

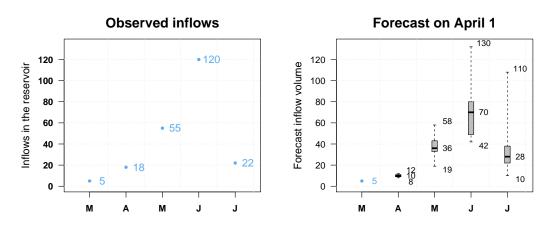
Our volunteer's July release was: $25 Mm^3$

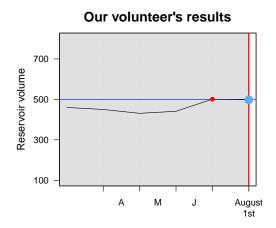
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 498 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

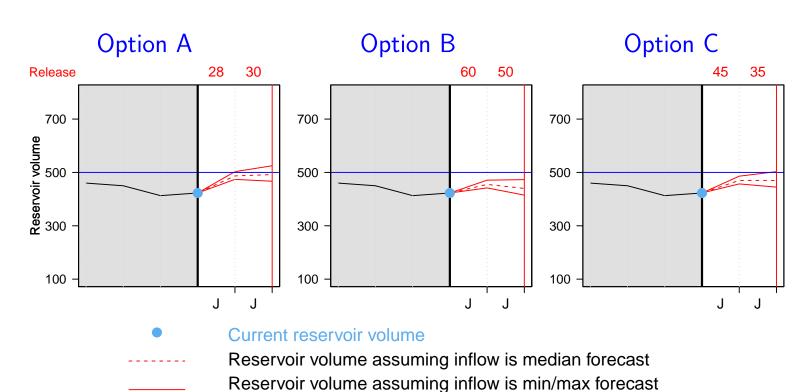
Let's go to the next forecast!

It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

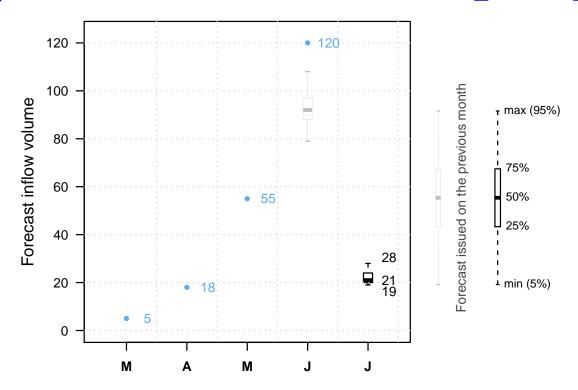
The volume on July 1st is therefore:

423
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 483 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

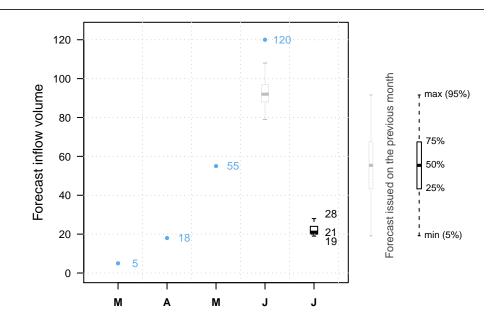


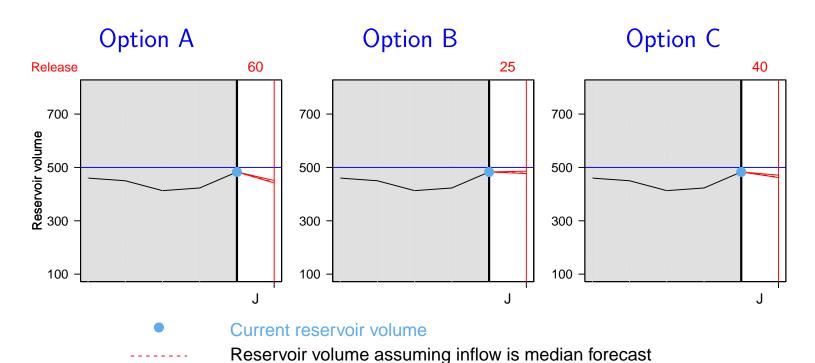
It is July 1st.

The reservoir is at 483 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

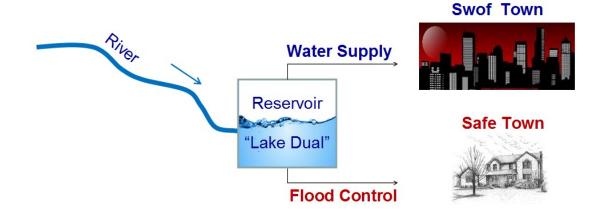
July inflow was: $22 Mm^3$

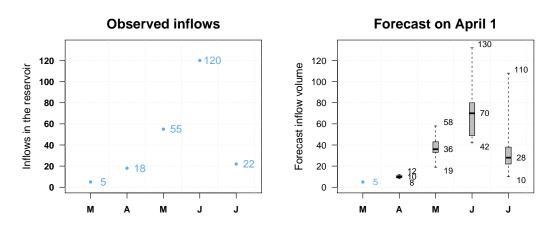
Our volunteer's July release was: $25 Mm^3$

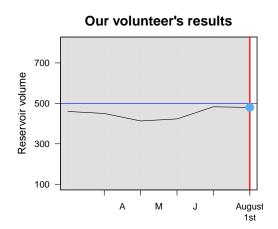
The volume on August 1st is therefore:

483
$$Mm^3 + 22 Mm^3 - 25 Mm^3 = 480 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

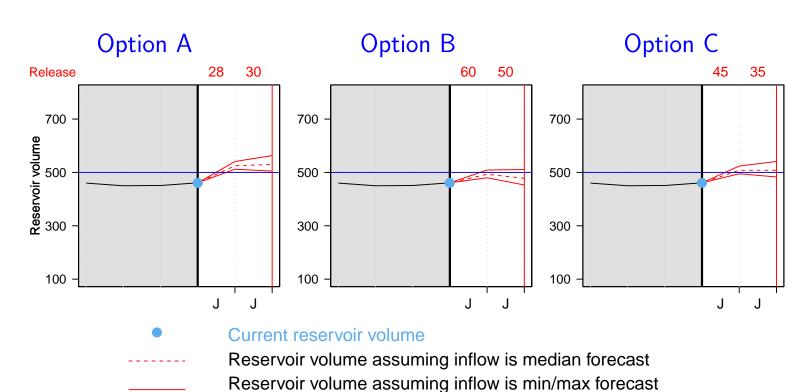
Let's go to the next forecast!

It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

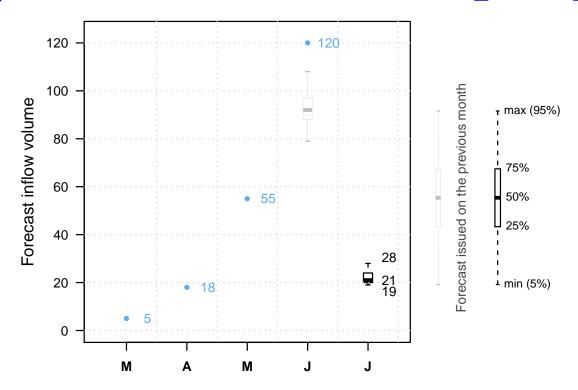
The volume on July 1st is therefore:

461
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 521 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

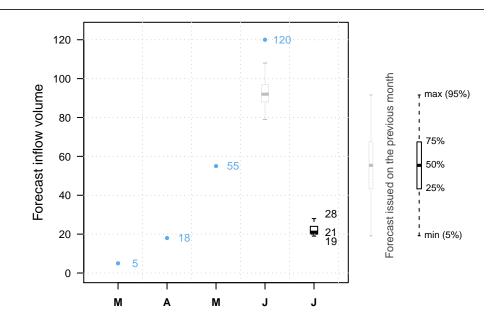


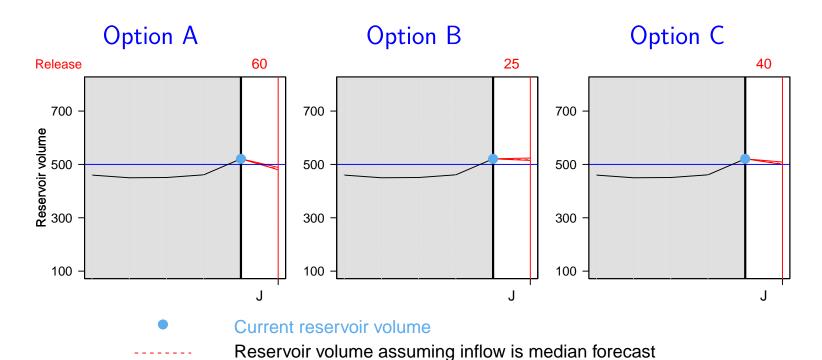
It is July 1st.

The reservoir is at $521 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

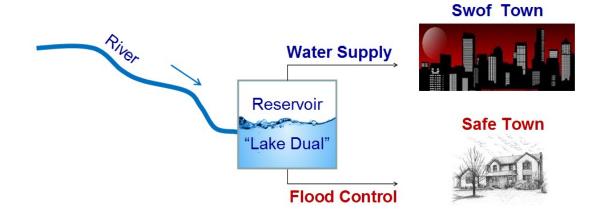
July inflow was: $22 Mm^3$

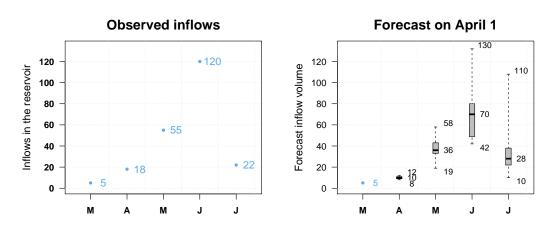
Our volunteer's July release was: $25 Mm^3$

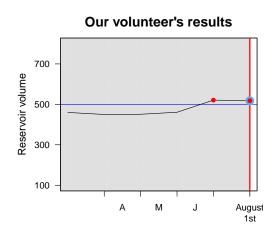
The volume on August 1st is therefore:

 $521 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 518 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

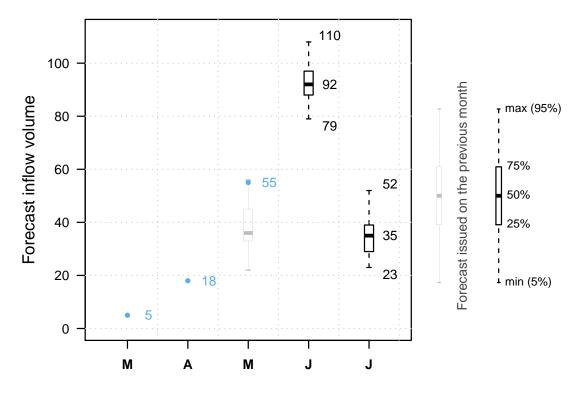
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

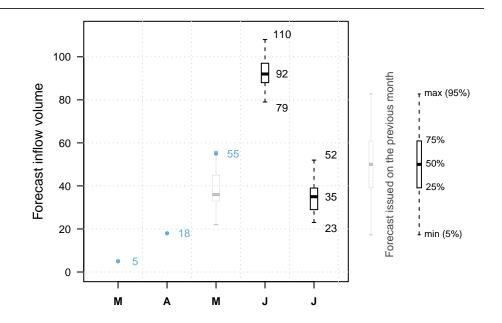


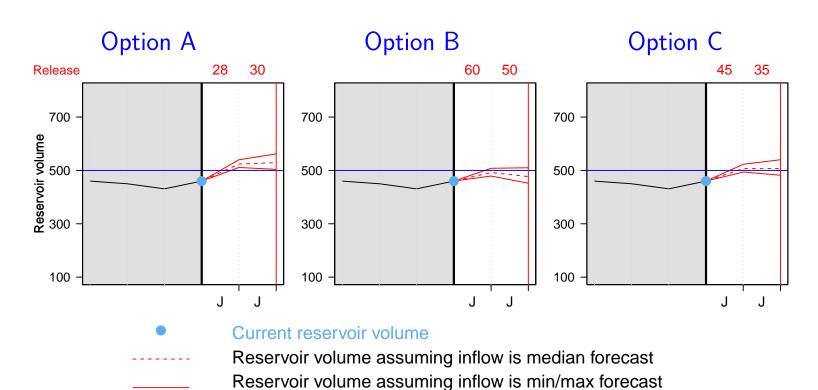
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

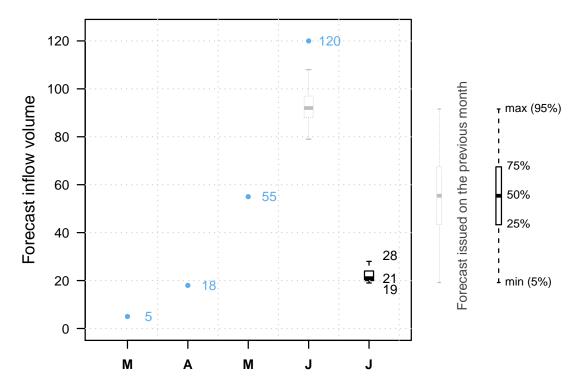
The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 60 Mm^3 = 520 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



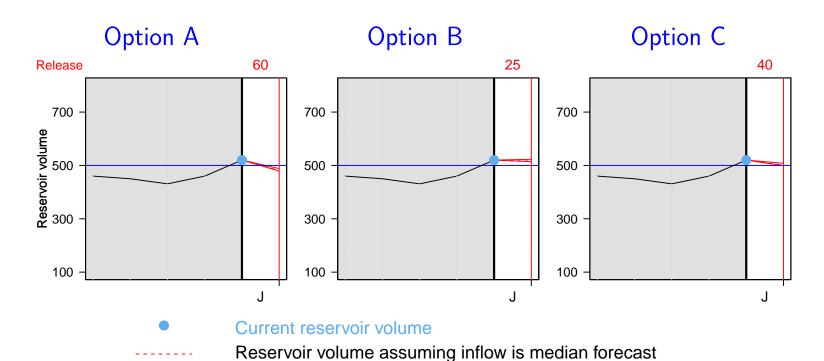
It is July 1st.

The reservoir is at $520 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

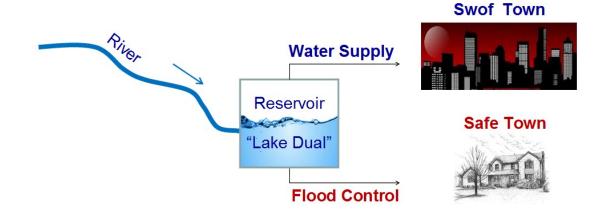
July inflow was: $22 Mm^3$

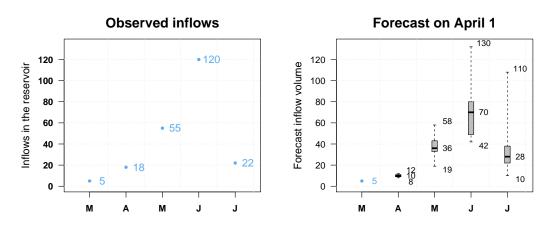
Our volunteer's July release was: $25 Mm^3$

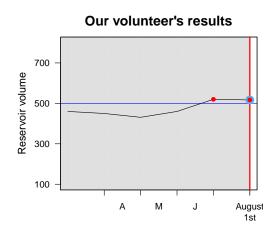
The volume on August 1st is therefore:

 $520 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 517 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

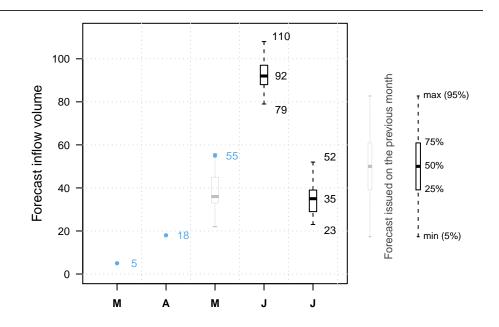
Let's go to the next forecast!

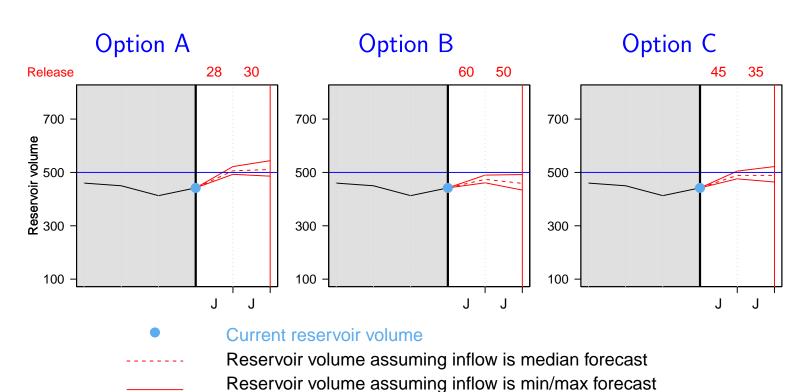
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

442 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

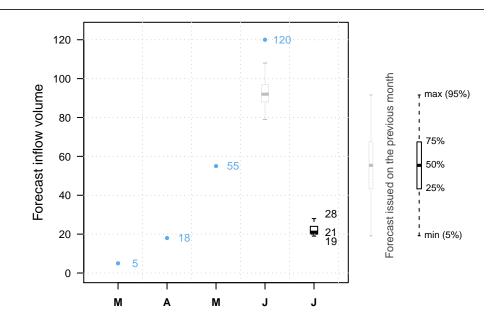
Can it be fixed?

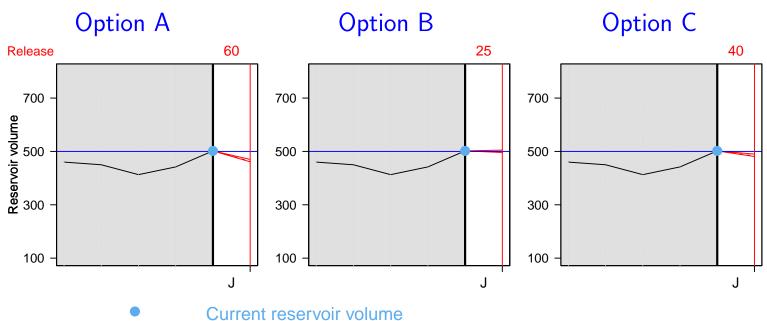
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's which release option see our volunteer will choose.

Reservoir volume assuming inflow is median forecast Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

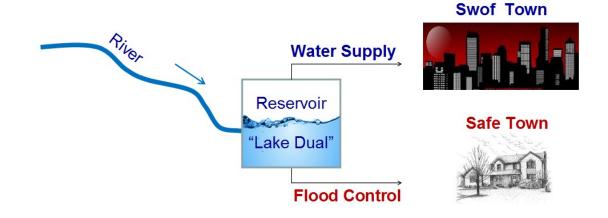
July inflow was: $22 Mm^3$

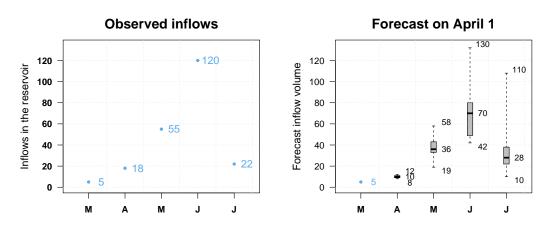
Our volunteer's July release was: $25 Mm^3$

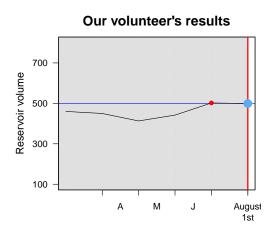
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 499 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

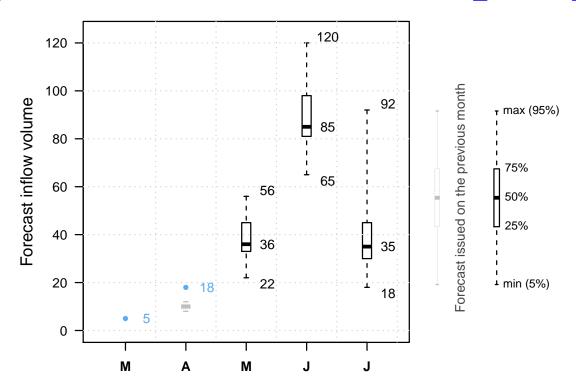
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

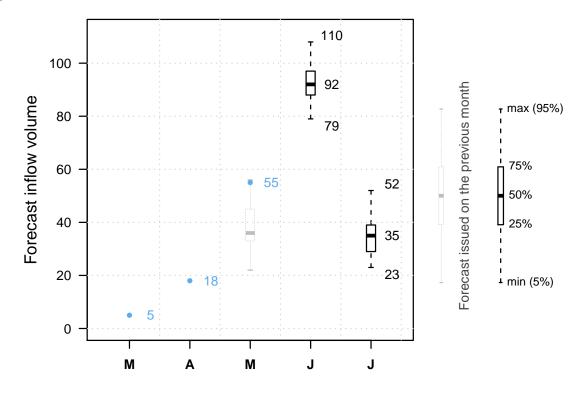
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

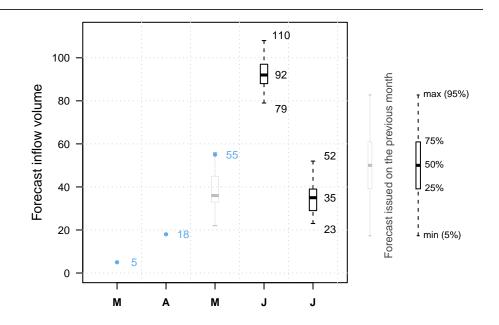


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 540 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

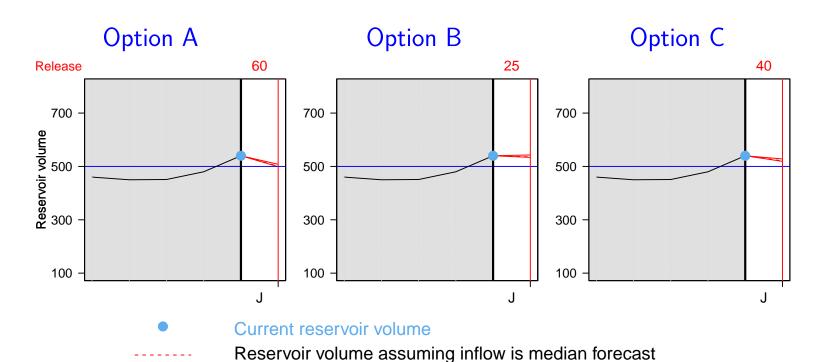
It is July 1st.

The reservoir is at $540 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

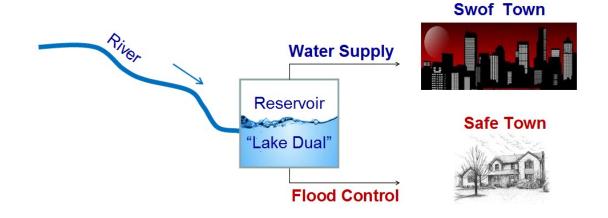
July inflow was: $22 Mm^3$

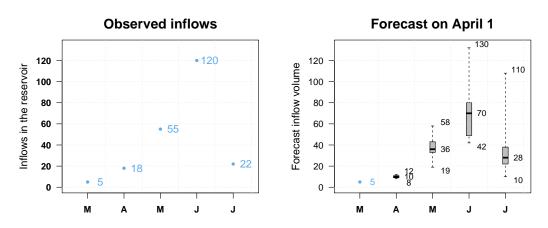
Our volunteer's July release was: $25 Mm^3$

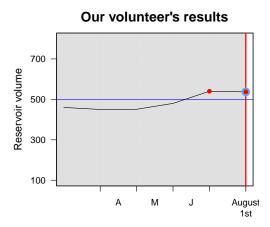
The volume on August 1st is therefore:

 $540 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 537 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

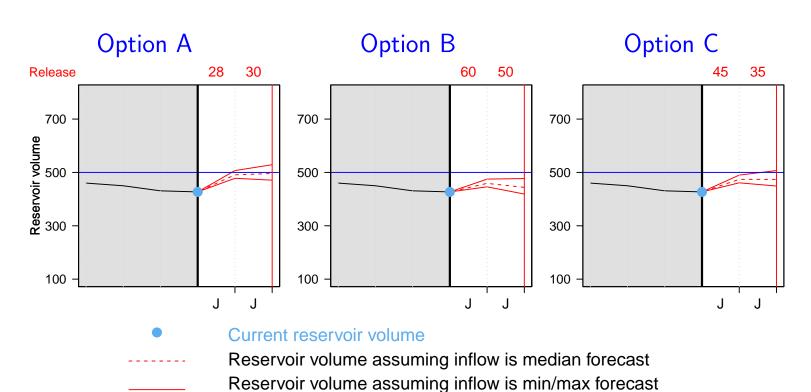
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

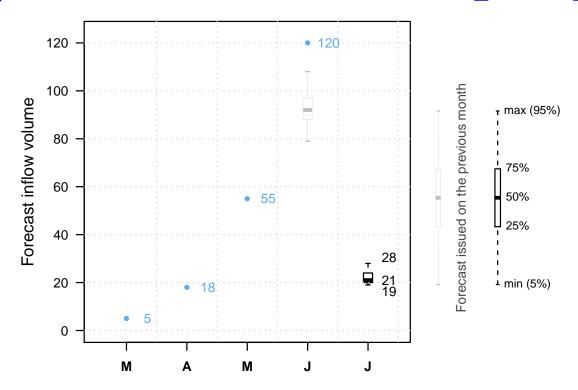
The volume on July 1st is therefore:

 $427 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

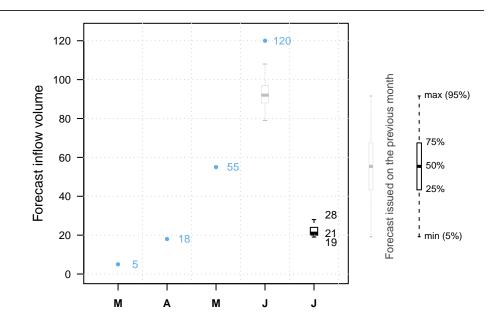


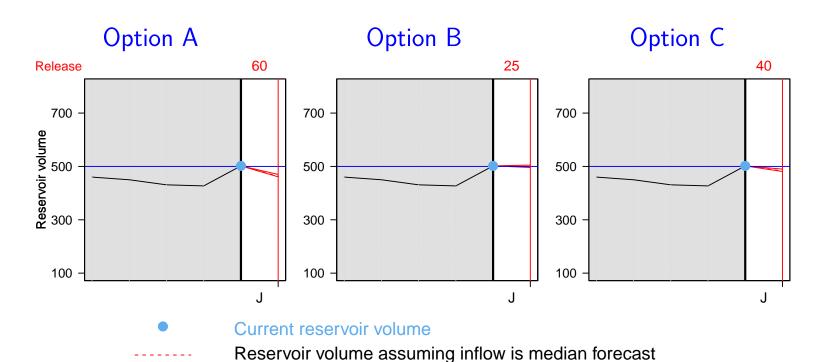
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

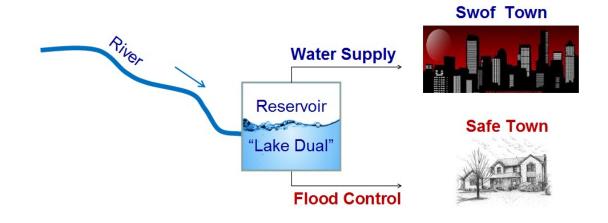
July inflow was: $22 Mm^3$

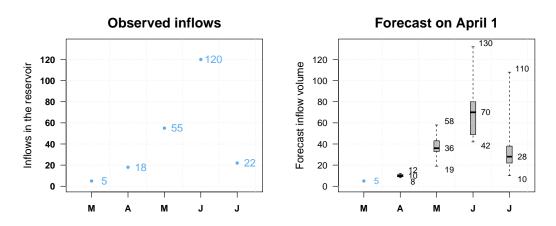
Our volunteer's July release was: $25 Mm^3$

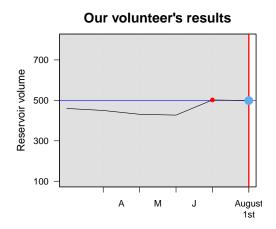
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 499 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

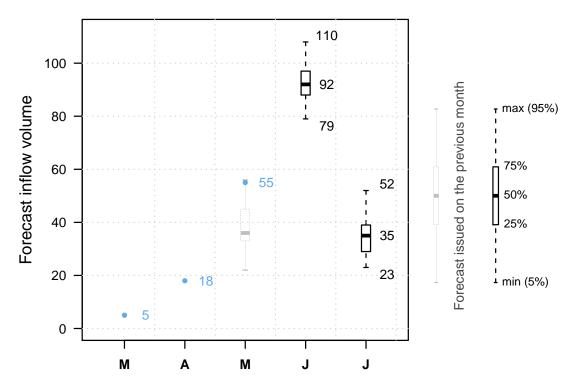
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

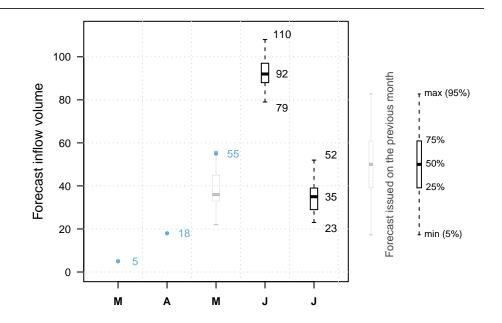


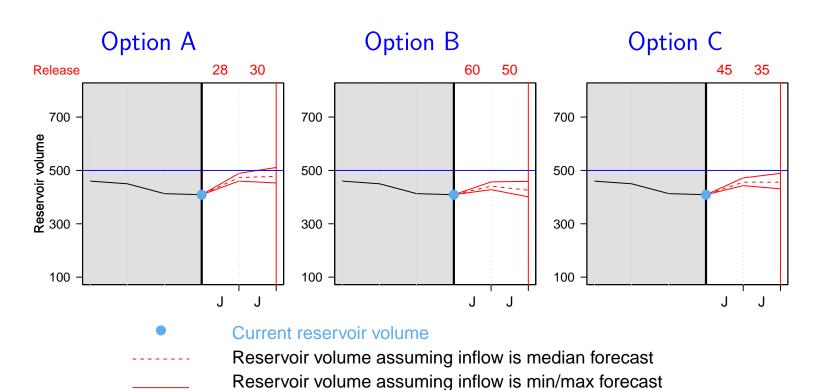
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

409
$$Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 484 \ Mm^3$$

No overtop!

The volunteer still has a job!

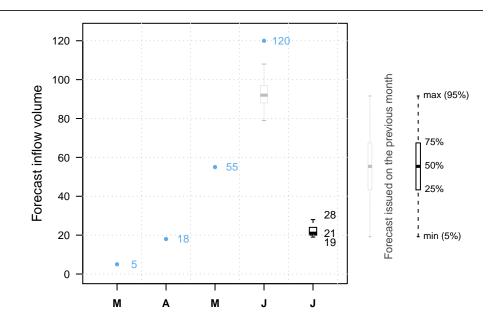
Let's go to the next forecast!

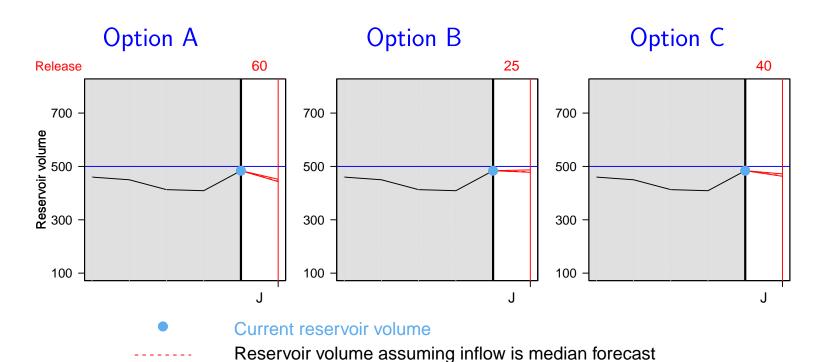
It is July 1st.

The reservoir is at 484 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

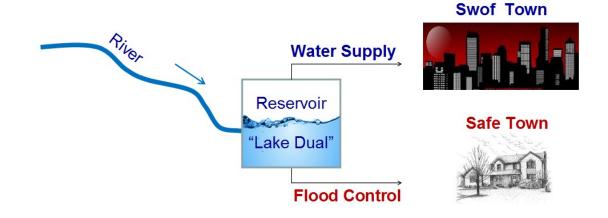
July inflow was: $22 Mm^3$

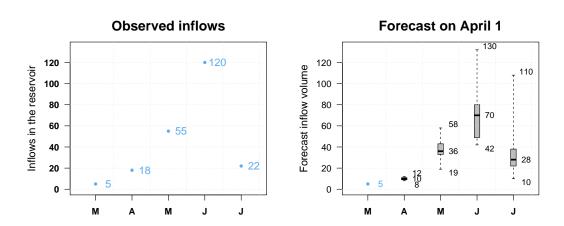
Our volunteer's July release was: $25 Mm^3$

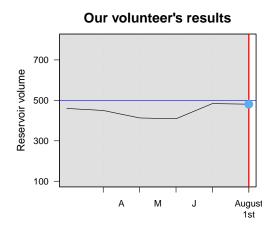
The volume on August 1st is therefore:

484
$$Mm^3 + 22 Mm^3 - 25 Mm^3 = 481 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

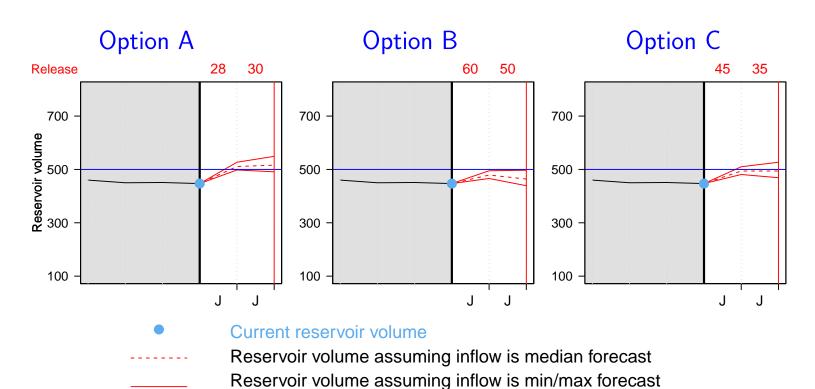
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

The volume on July 1st is therefore:

447 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 522 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

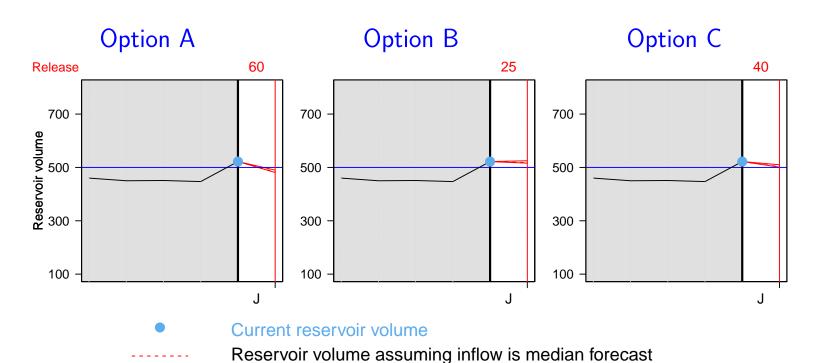
It is July 1st.

The reservoir is at $522 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

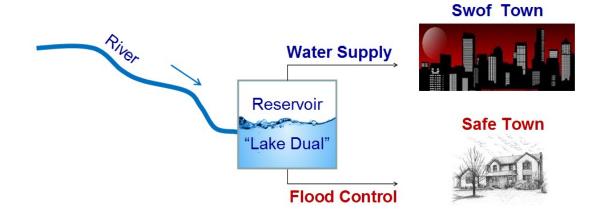
July inflow was: $22 Mm^3$

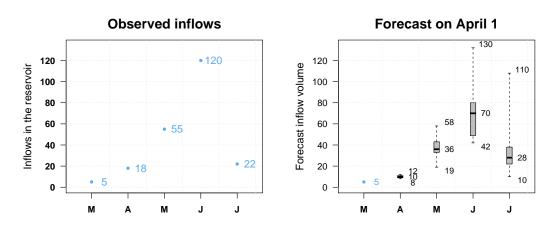
Our volunteer's July release was: $25 Mm^3$

The volume on August 1st is therefore:

 $522 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 519 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 441 \ Mm^3$$

No overtop!

The volunteer still has a job!

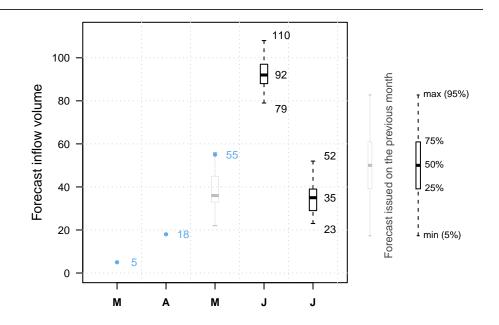
Let's go to the next forecast!

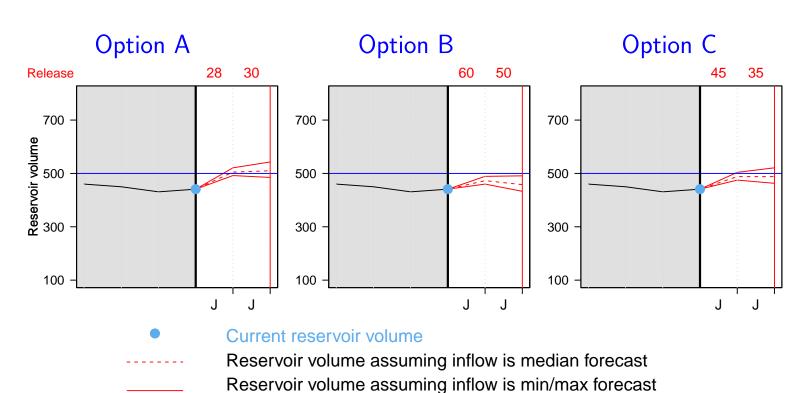
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 516 \ Mm^3$

Overtop!

The volunteer got fired!

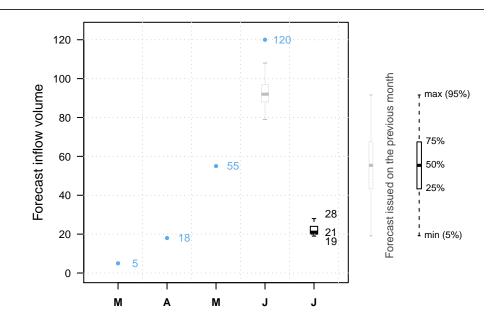
Can it be fixed?

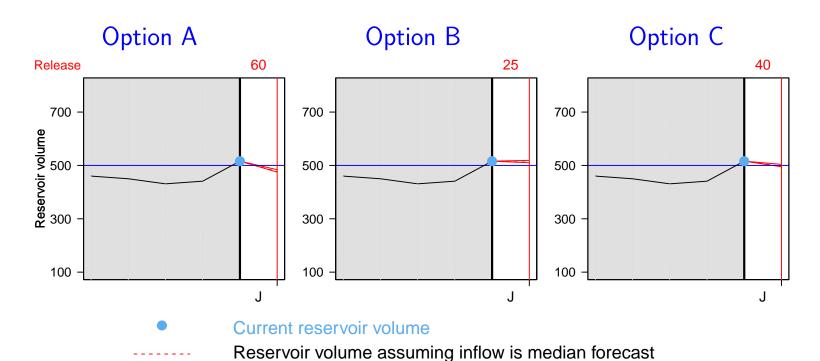
It is July 1st.

The reservoir is at $516 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

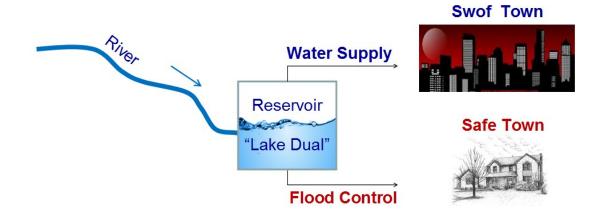
July inflow was: $22 Mm^3$

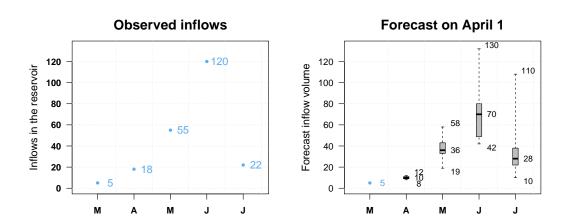
Our volunteer's July release was: $25 Mm^3$

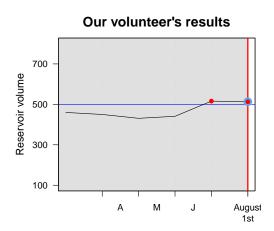
The volume on August 1st is therefore:

 $516 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 513 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

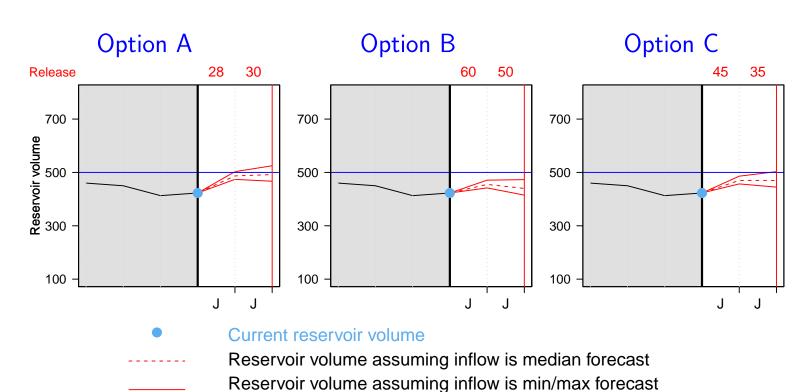
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

423
$$Mm^3 + 120 Mm^3 - 45 Mm^3 = 498 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

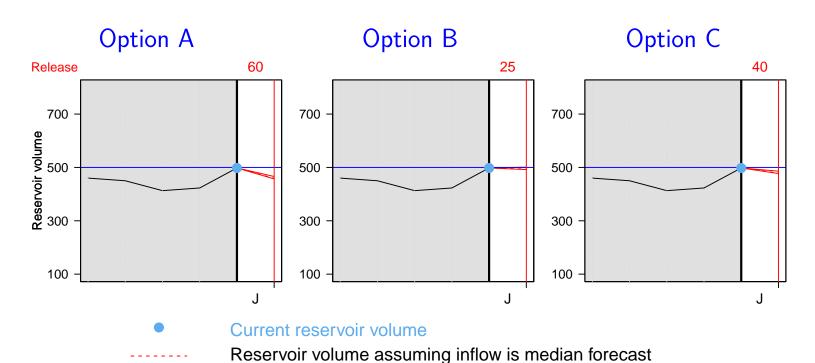
It is July 1st.

The reservoir is at 498 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

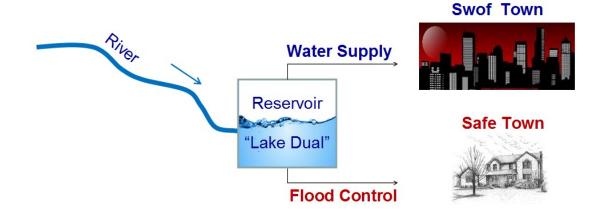
July inflow was: $22 Mm^3$

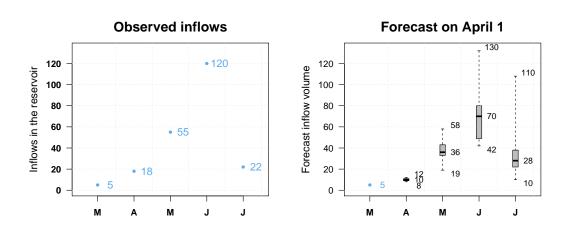
Our volunteer's July release was: $25 Mm^3$

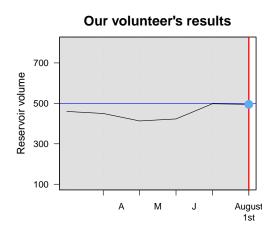
The volume on August 1st is therefore:

498
$$Mm^3 + 22 Mm^3 - 25 Mm^3 = 495 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

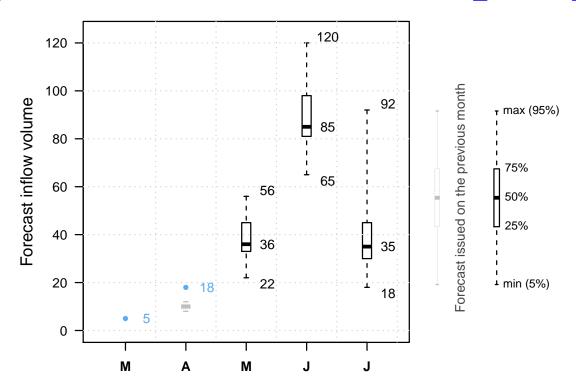
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

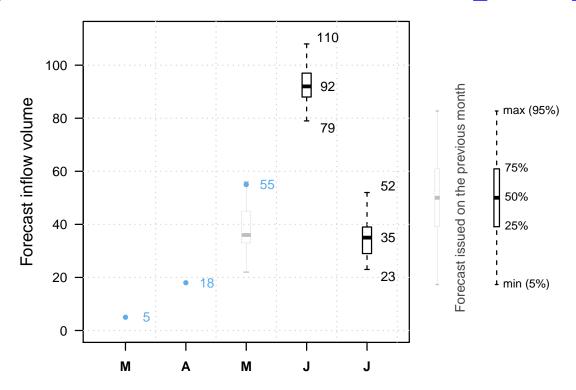
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



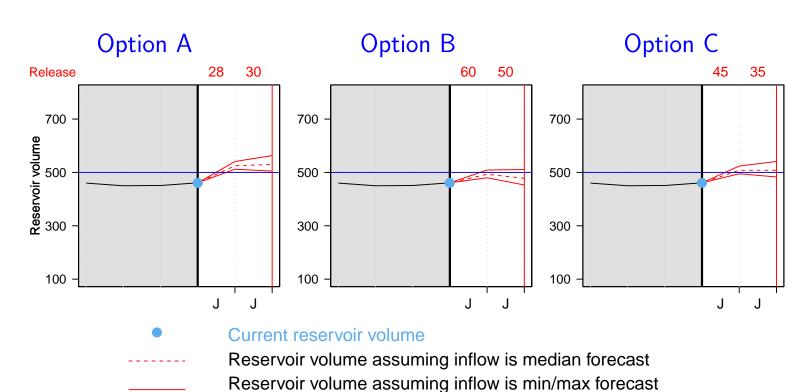
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

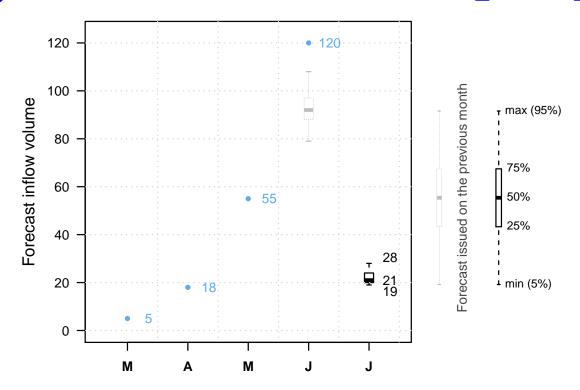
The volume on July 1st is therefore:

 $461 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 536 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



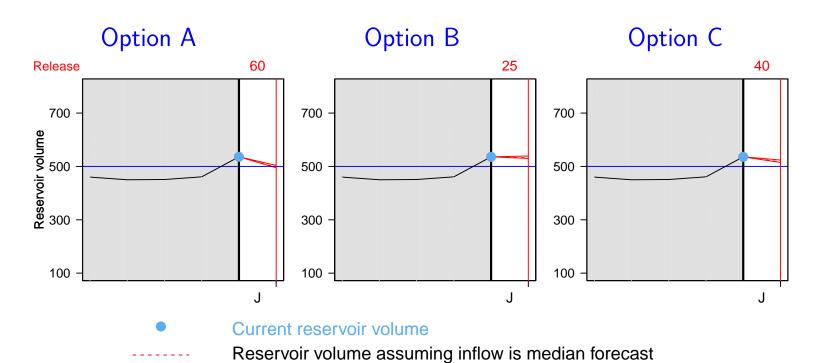
It is July 1st.

The reservoir is at $536 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

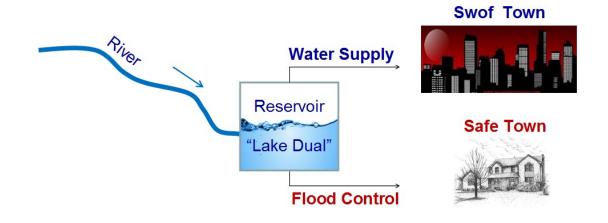
July inflow was: $22 Mm^3$

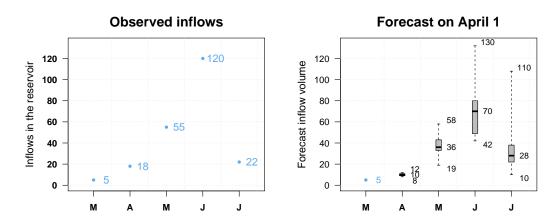
Our volunteer's July release was: $25 Mm^3$

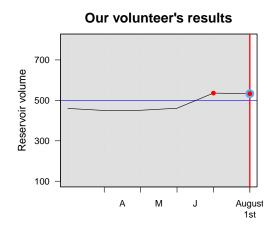
The volume on August 1st is therefore:

 $536 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 533 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

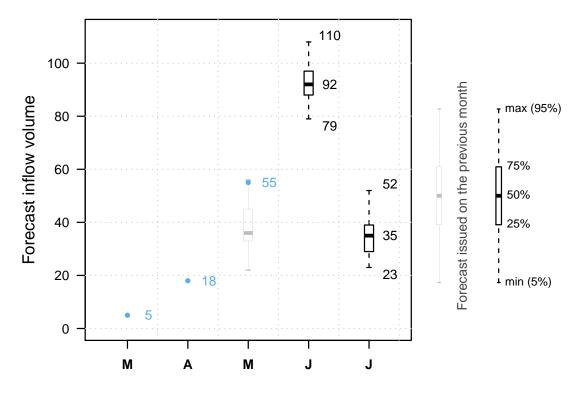
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

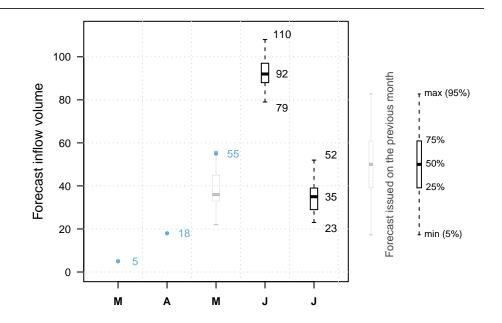


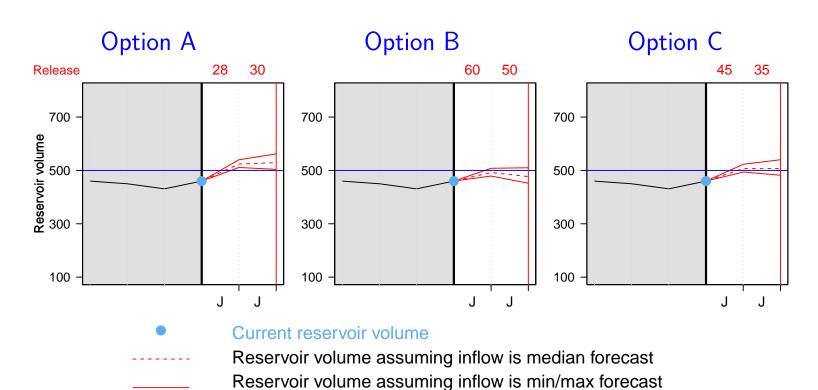
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 535 Mm^3$

Overtop!

The volunteer got fired!

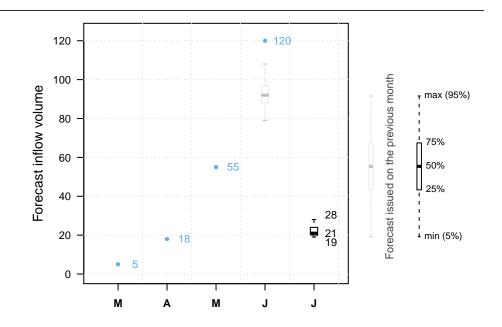
Can it be fixed?

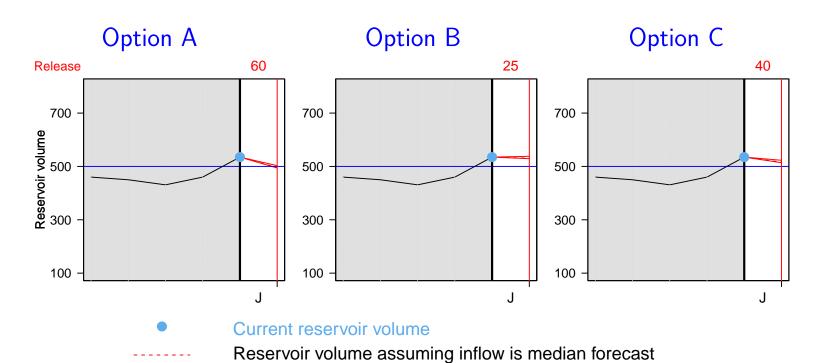
It is July 1st.

The reservoir is at $535 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

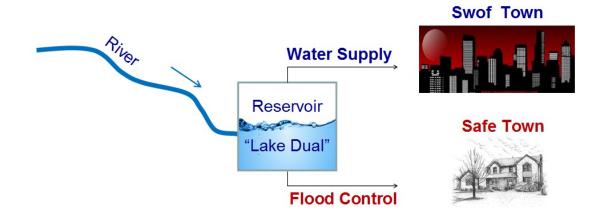
July inflow was: $22 Mm^3$

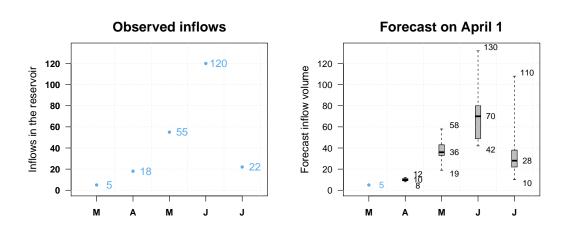
Our volunteer's July release was: $25 Mm^3$

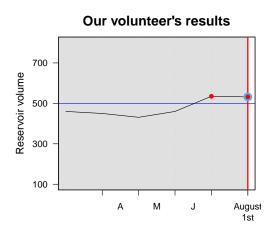
The volume on August 1st is therefore:

 $535 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 532 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

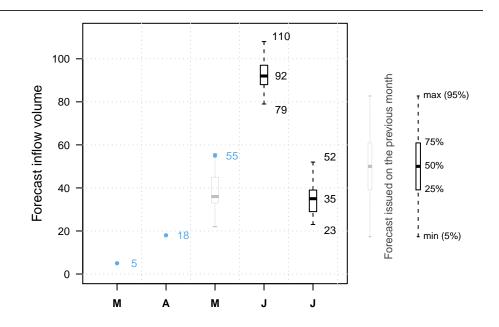
Let's go to the next forecast!

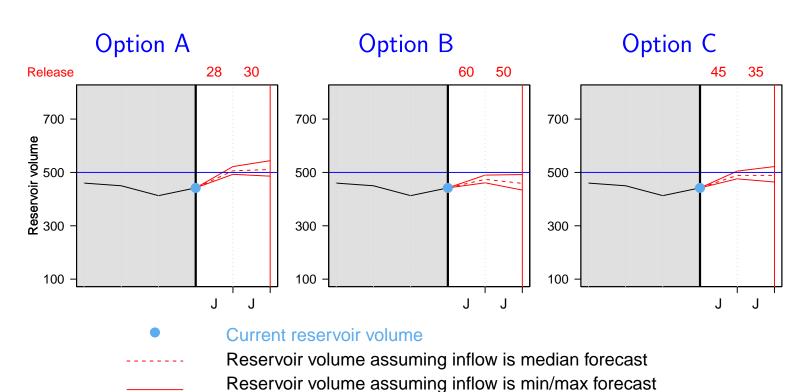
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

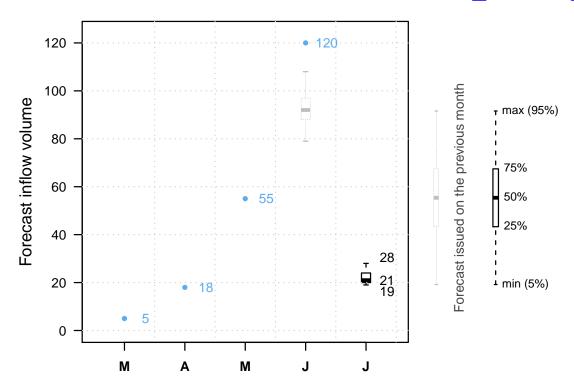
The volume on July 1st is therefore:

442 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 517 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

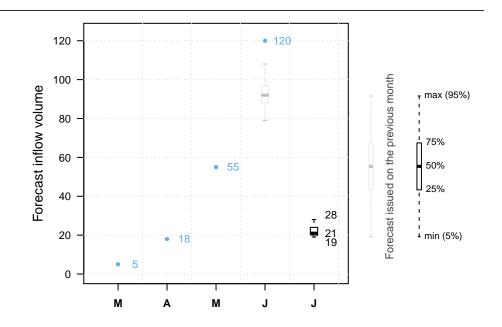


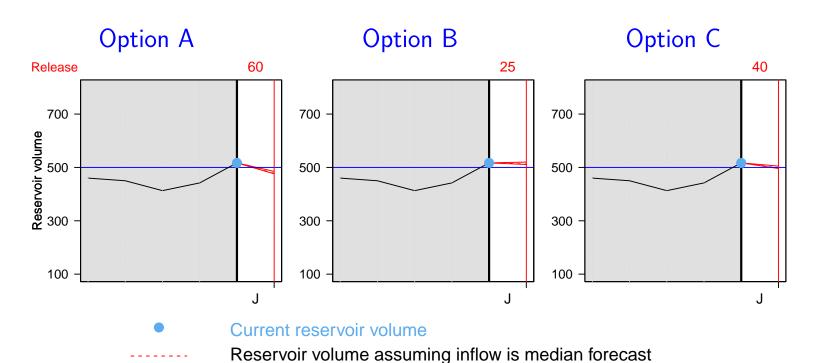
It is July 1st.

The reservoir is at $517 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

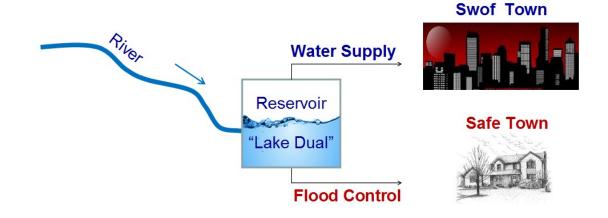
July inflow was: $22 Mm^3$

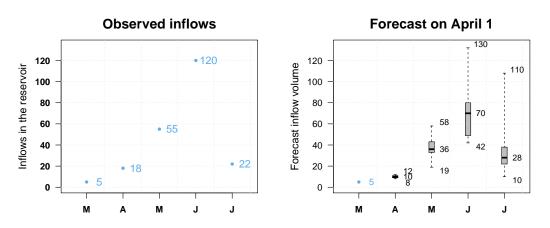
Our volunteer's July release was: $25 Mm^3$

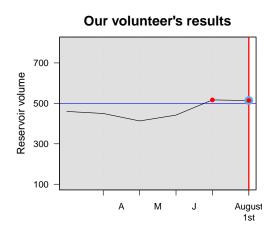
The volume on August 1st is therefore:

 $517 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 514 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

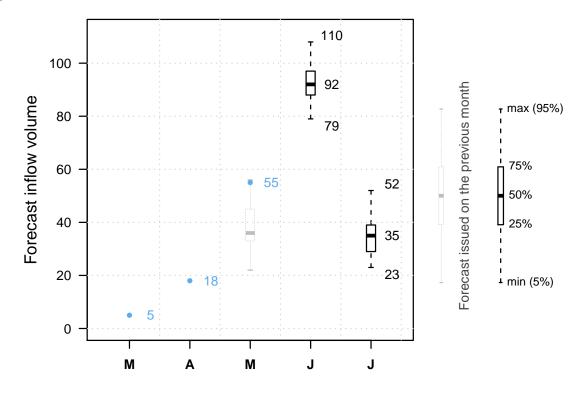
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

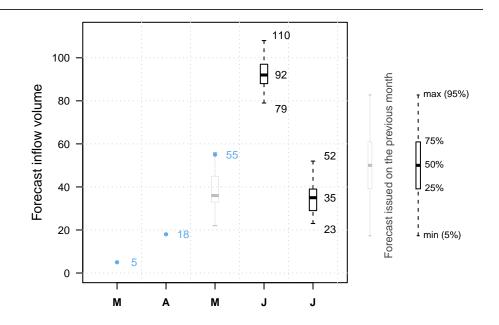


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 555 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

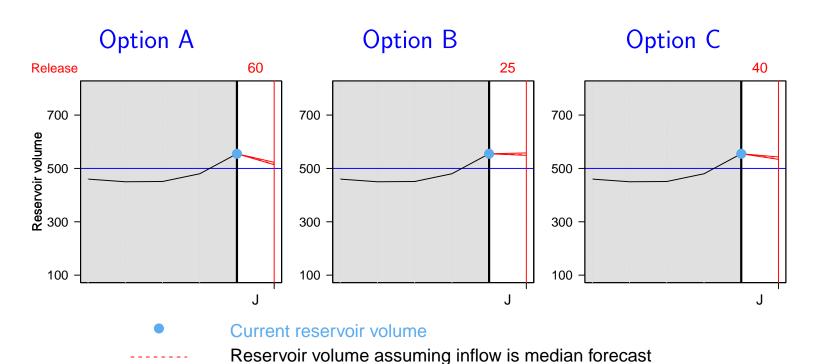
It is July 1st.

The reservoir is at $555 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

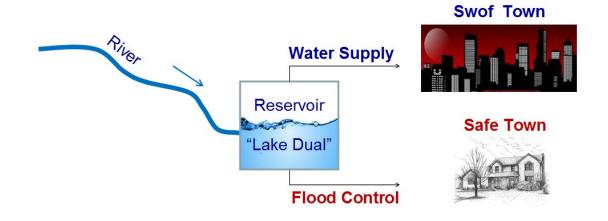
July inflow was: $22 Mm^3$

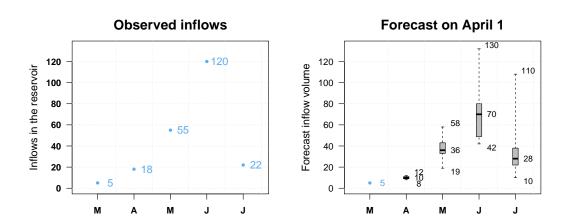
Our volunteer's July release was: $25 Mm^3$

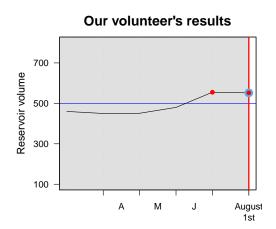
The volume on August 1st is therefore:

 $555 \ Mm^3 + 22 \ Mm^3 - 25 \ Mm^3 = 552 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

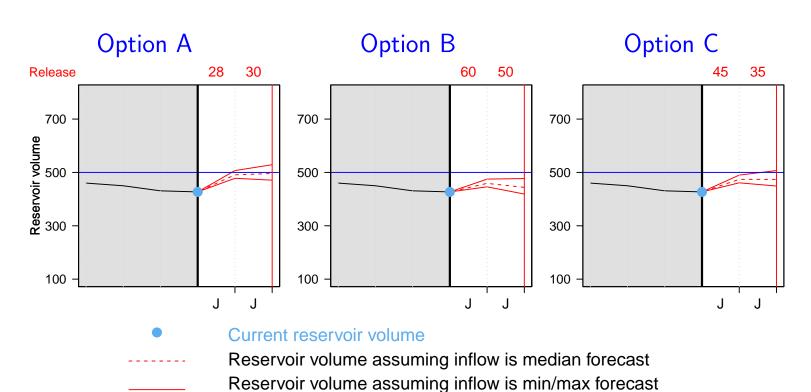
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

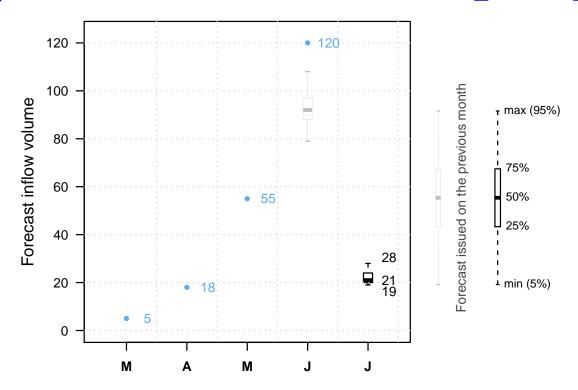
The volume on July 1st is therefore:

427 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 519 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

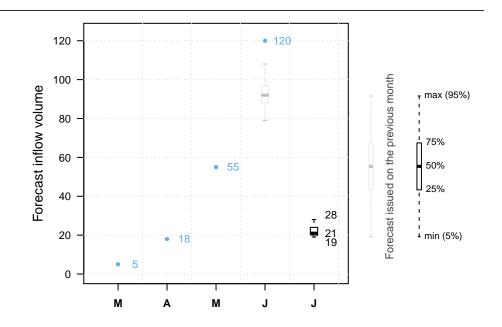


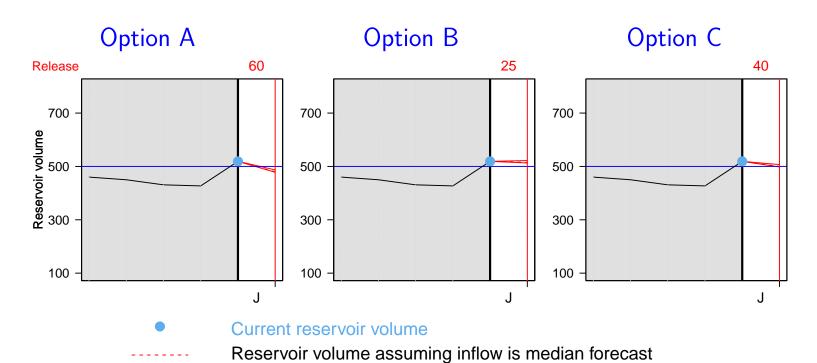
It is July 1st.

The reservoir is at $519 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

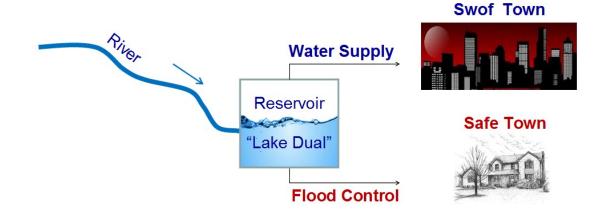
July inflow was: $22 Mm^3$

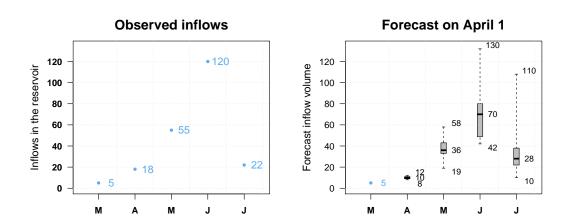
Our volunteer's July release was: $40 Mm^3$

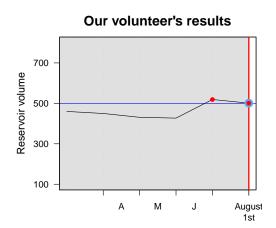
The volume on August 1st is therefore:

 $519 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 501 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

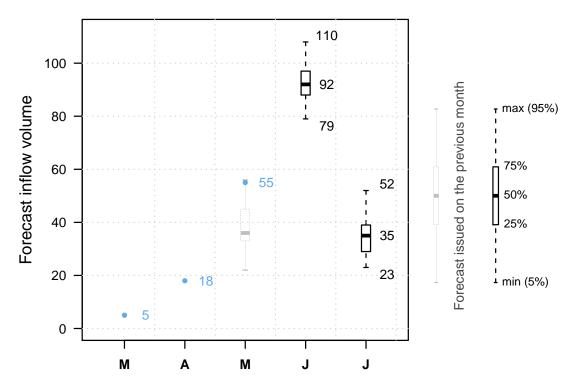
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

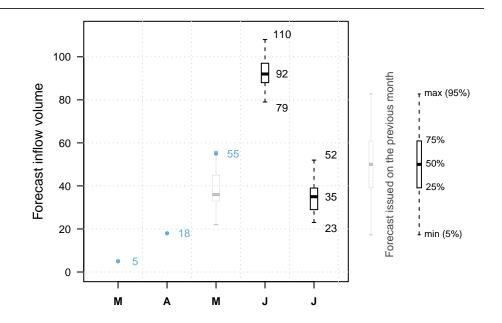


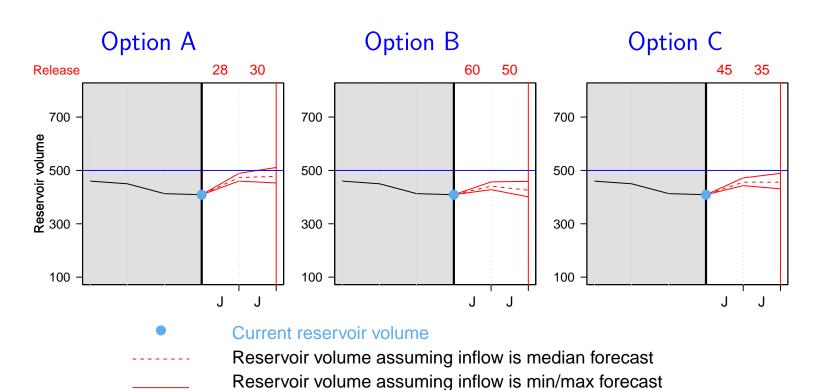
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

 $409 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

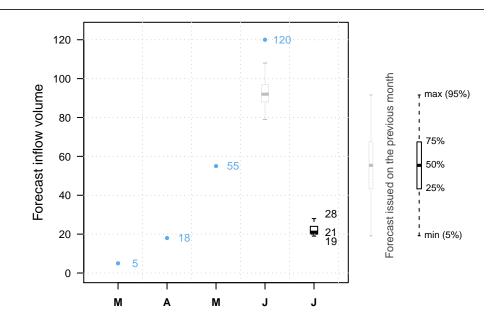
Can it be fixed?

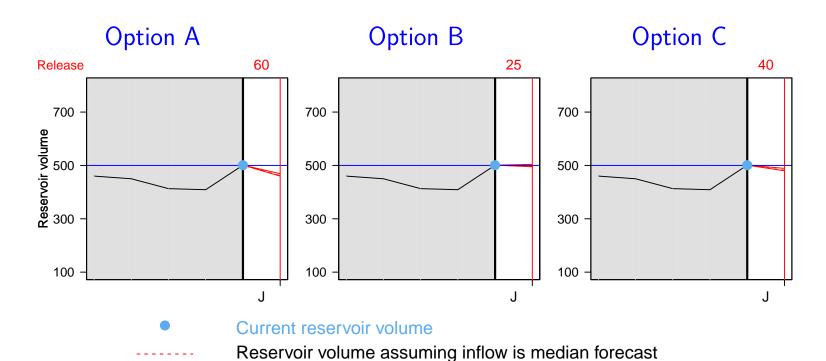
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

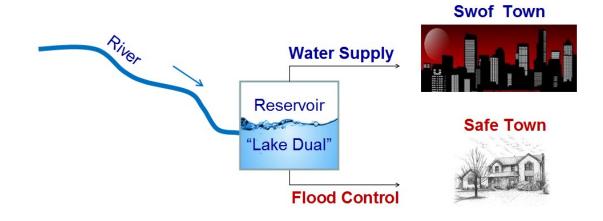
July inflow was: $22 Mm^3$

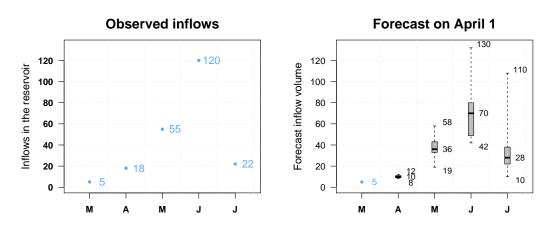
Our volunteer's July release was: 40 Mm^3

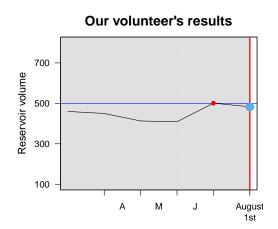
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 483 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

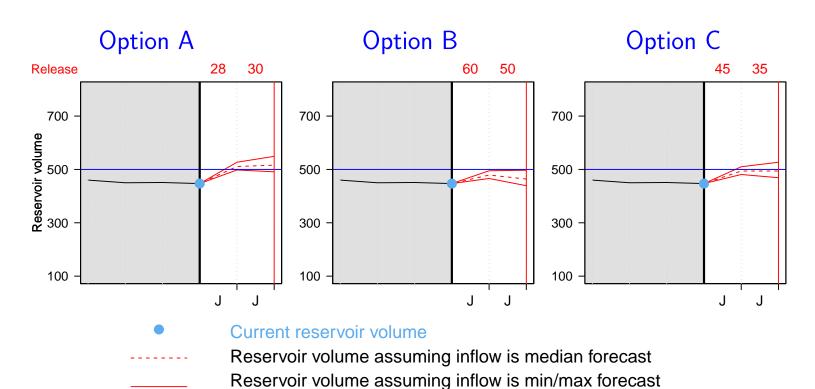
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 539 \ Mm^3$

Overtop!

The volunteer got fired!

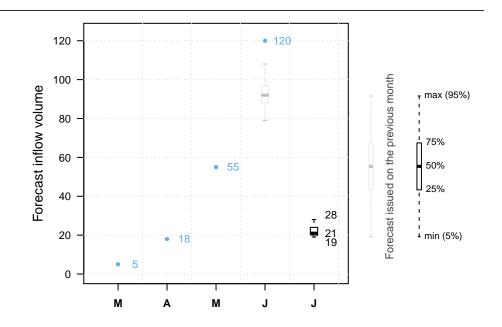
Can it be fixed?

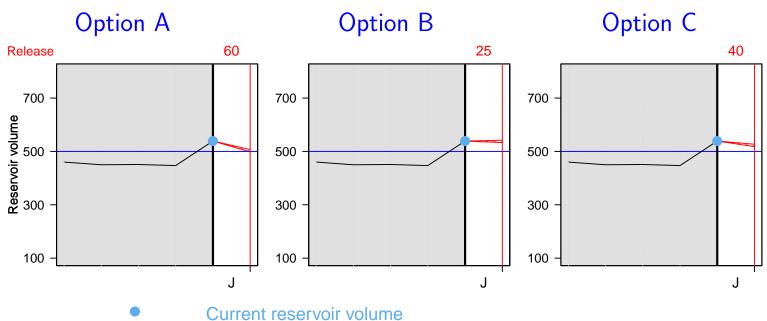
It is July 1st.

The reservoir is at $539 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's which release option see our volunteer will choose.

Reservoir volume assuming inflow is median forecast Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

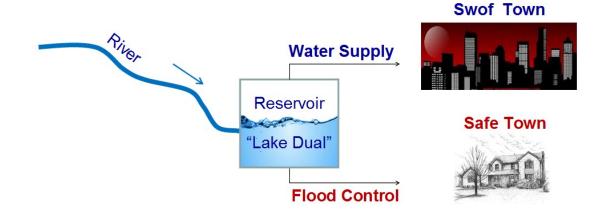
July inflow was: $22 Mm^3$

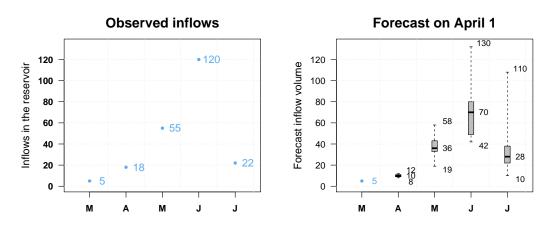
Our volunteer's July release was: $40 Mm^3$

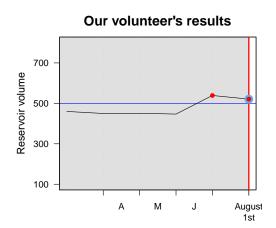
The volume on August 1st is therefore:

 $539 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 521 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

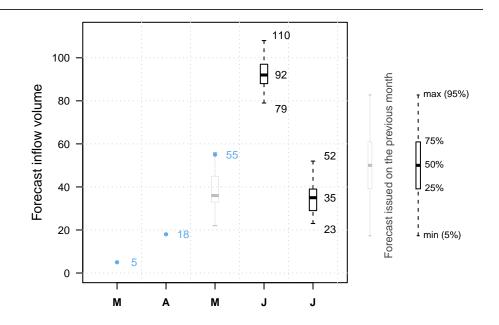
Let's go to the next forecast!

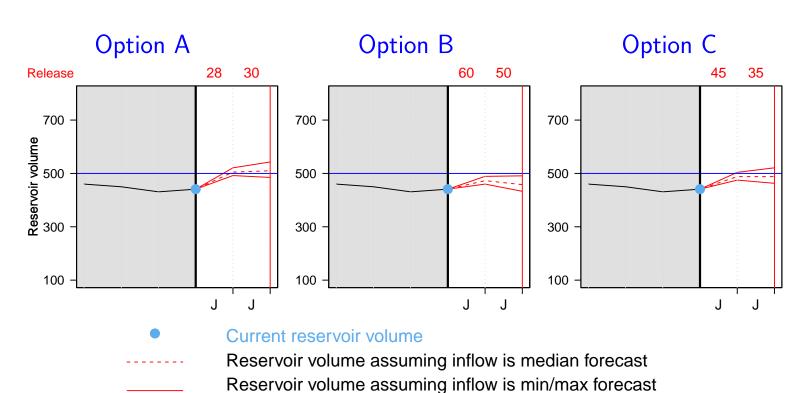
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

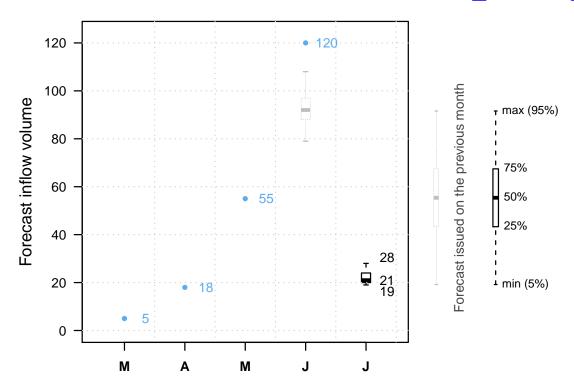
The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 533 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

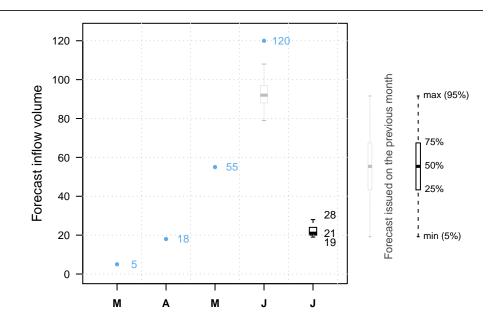


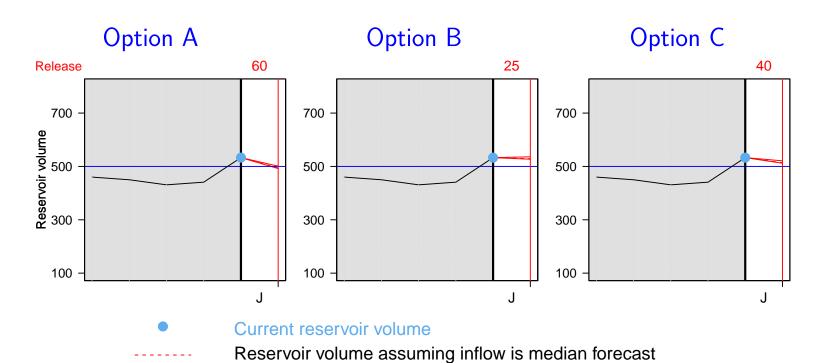
It is July 1st.

The reservoir is at $533 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

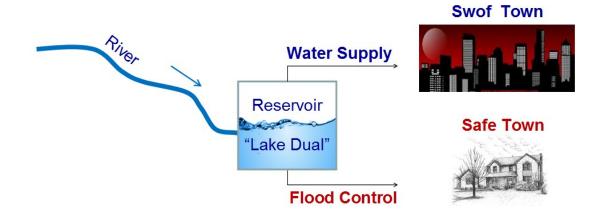
July inflow was: $22 Mm^3$

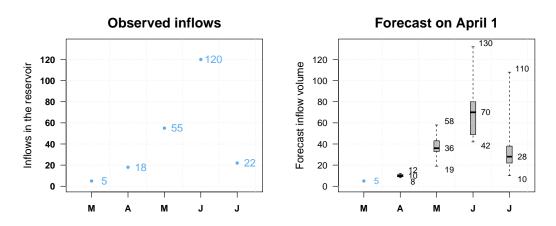
Our volunteer's July release was: $40 Mm^3$

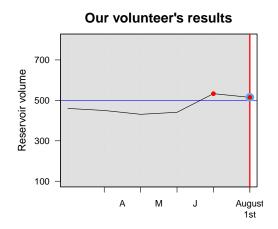
The volume on August 1st is therefore:

 $533 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 515 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

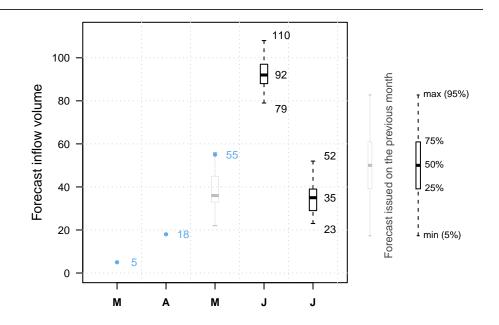
Let's go to the next forecast!

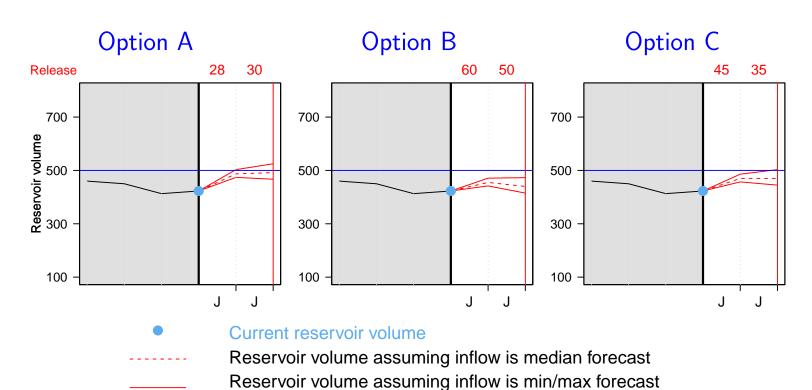
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

423
$$Mm^3 + 120 Mm^3 - 28 Mm^3 = 515 Mm^3$$

Overtop!

The volunteer got fired!

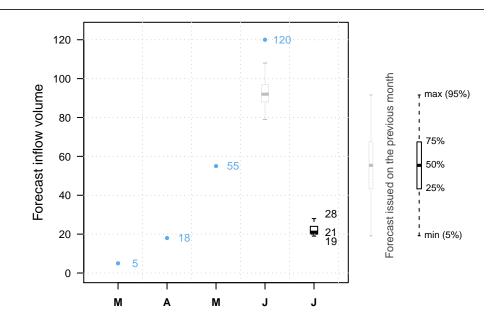
Can it be fixed?

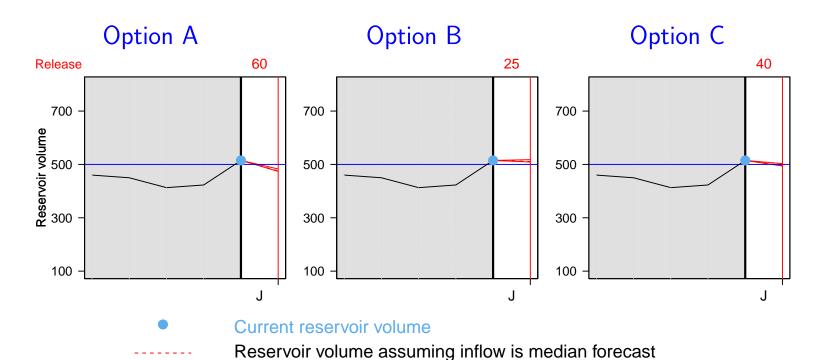
It is July 1st.

The reservoir is at $515 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

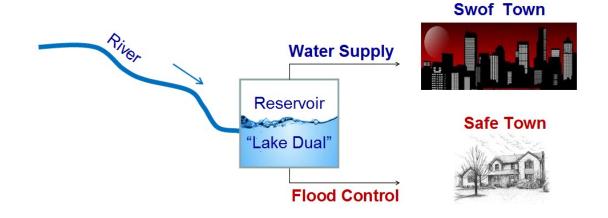
July inflow was: $22 Mm^3$

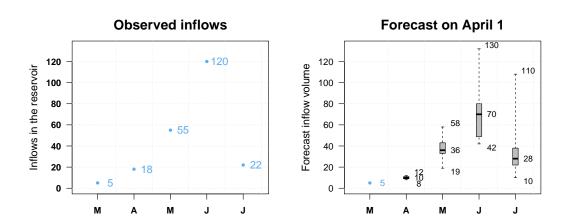
Our volunteer's July release was: 40 Mm^3

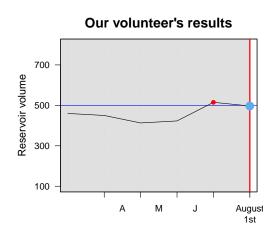
The volume on August 1st is therefore:

$$515 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 497 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

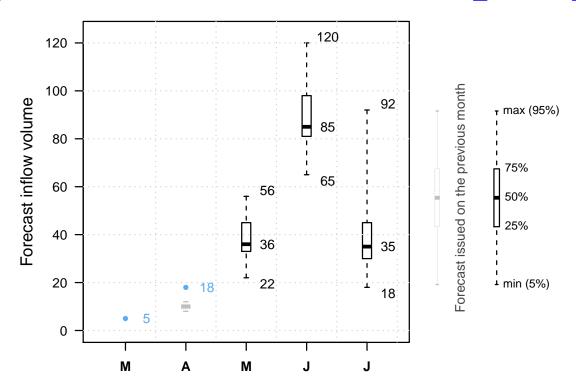
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

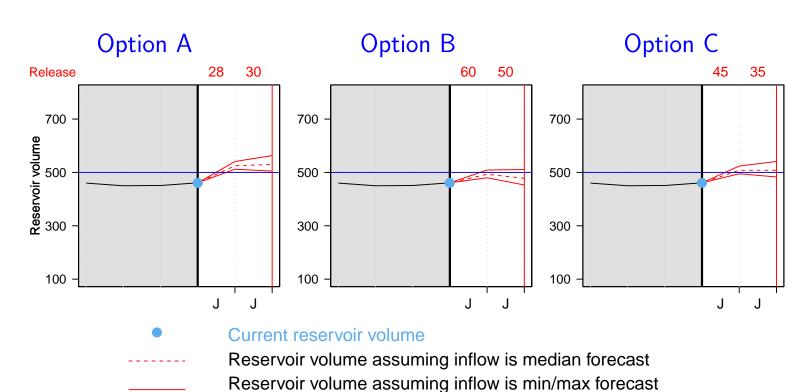
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

$$461 \ Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 553 \ Mm^3$$

Overtop!

The volunteer got fired!

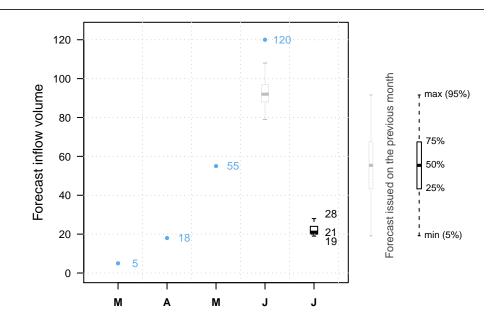
Can it be fixed?

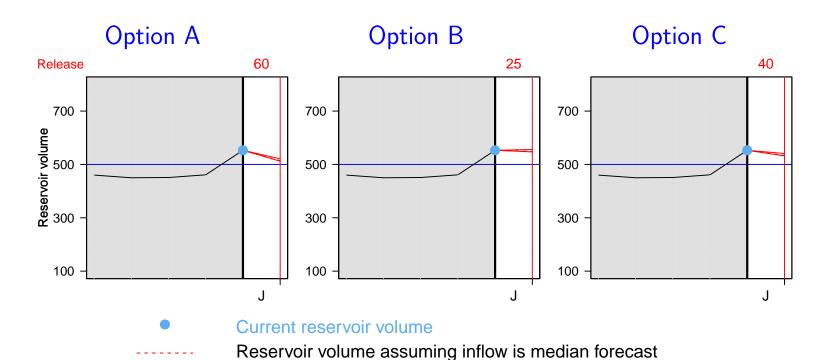
It is July 1st.

The reservoir is at $553 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

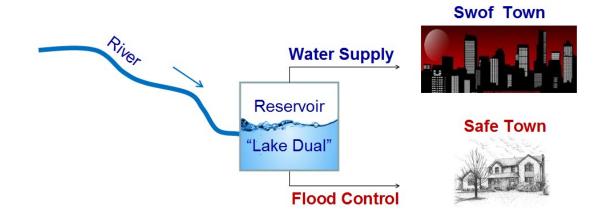
July inflow was: $22 Mm^3$

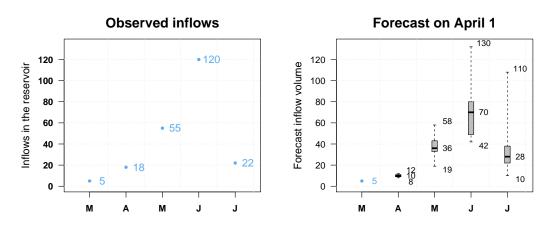
Our volunteer's July release was: $40 Mm^3$

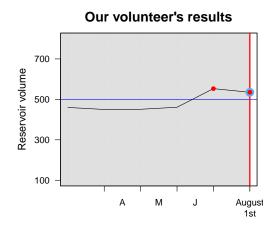
The volume on August 1st is therefore:

 $553 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 535 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

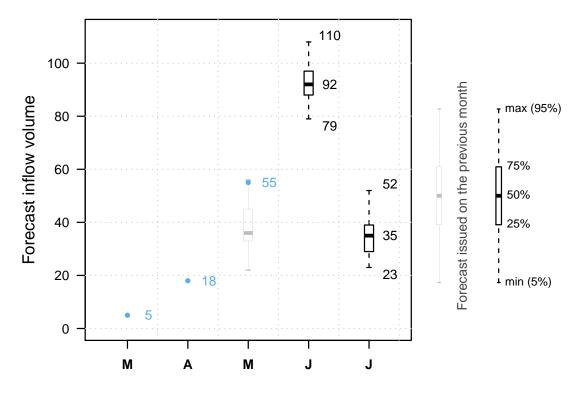
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

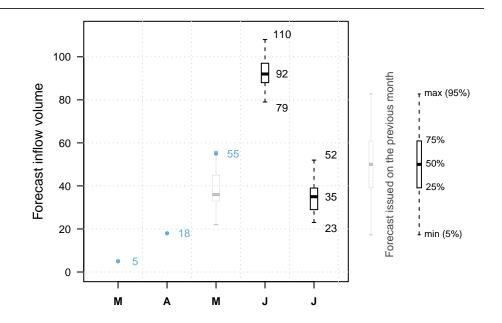


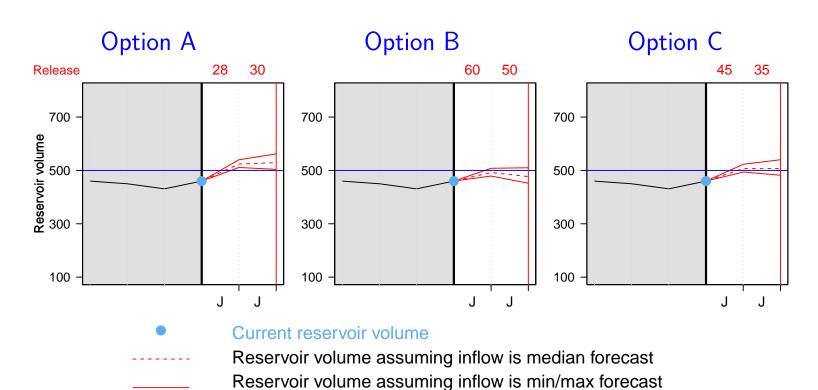
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 28 Mm^3 = 552 Mm^3$

Overtop!

The volunteer got fired!

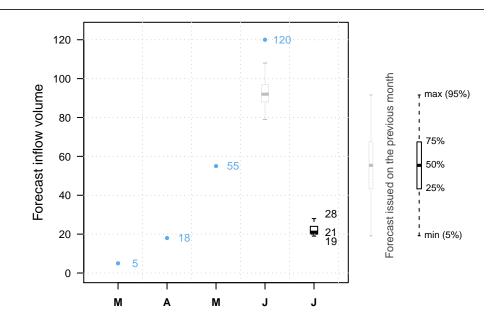
Can it be fixed?

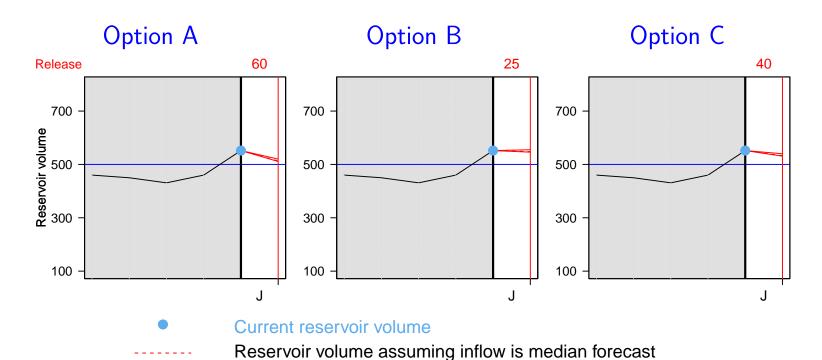
It is July 1st.

The reservoir is at $552 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

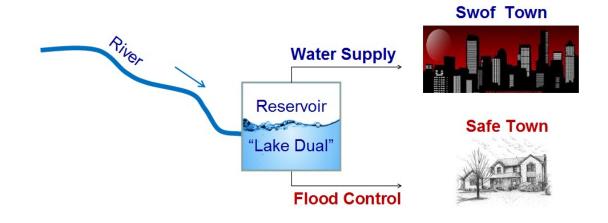
July inflow was: $22 Mm^3$

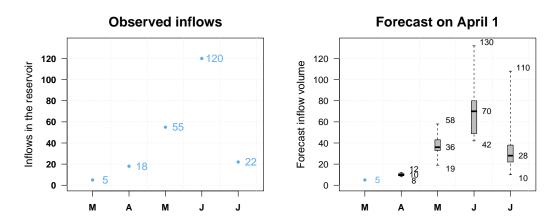
Our volunteer's July release was: $40 Mm^3$

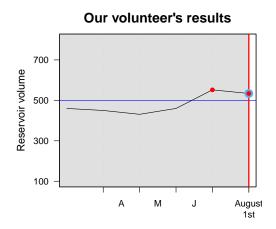
The volume on August 1st is therefore:

 $552 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 534 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

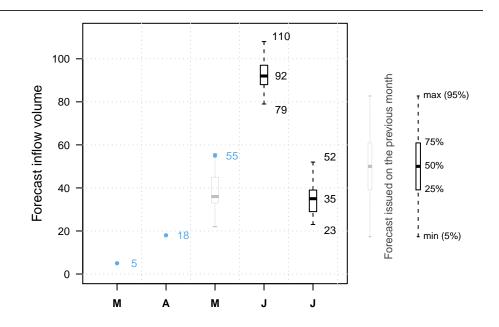
Let's go to the next forecast!

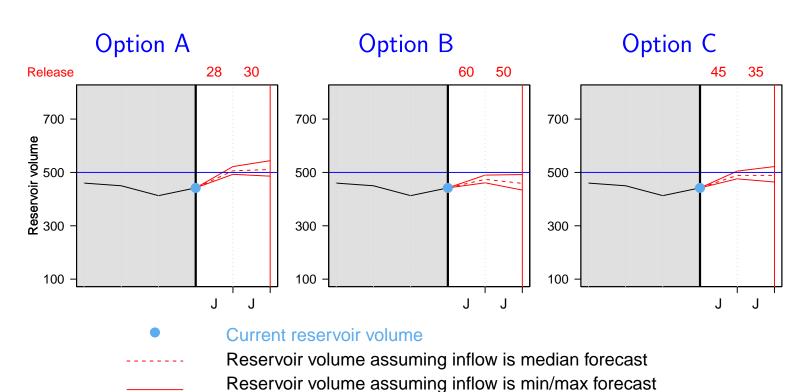
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

442
$$Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 534 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

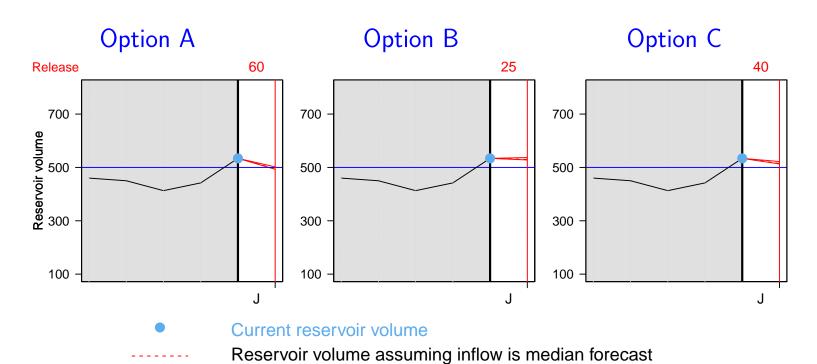
It is July 1st.

The reservoir is at $534 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

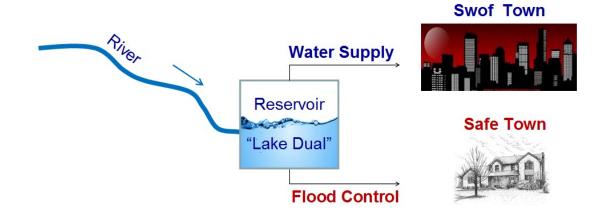
July inflow was: $22 Mm^3$

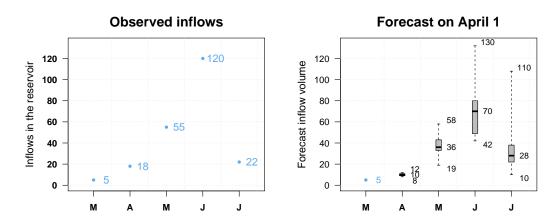
Our volunteer's July release was: $40 Mm^3$

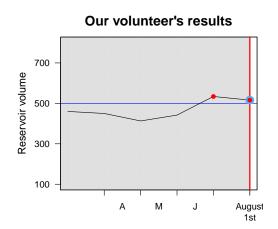
The volume on August 1st is therefore:

 $534 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 516 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

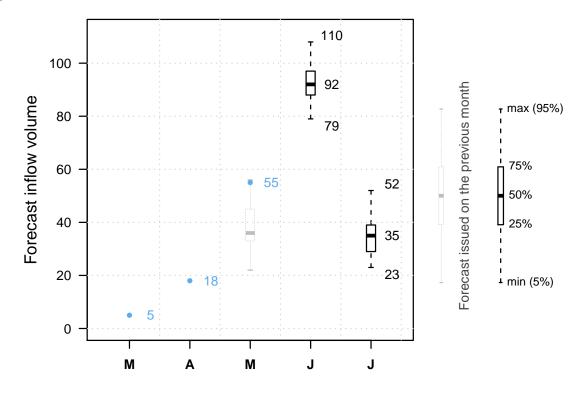
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

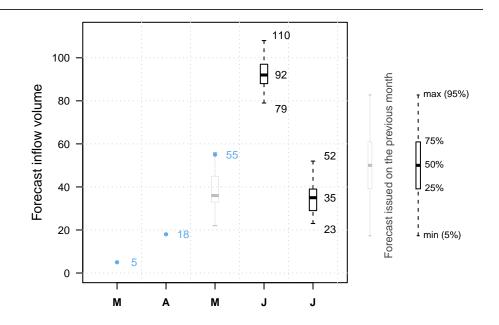


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $28 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 28 \ Mm^3 = 572 \ Mm^3$

Overtop!

The volunteer got fired!

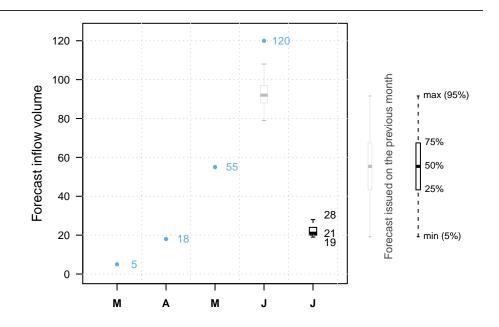
Can it be fixed?

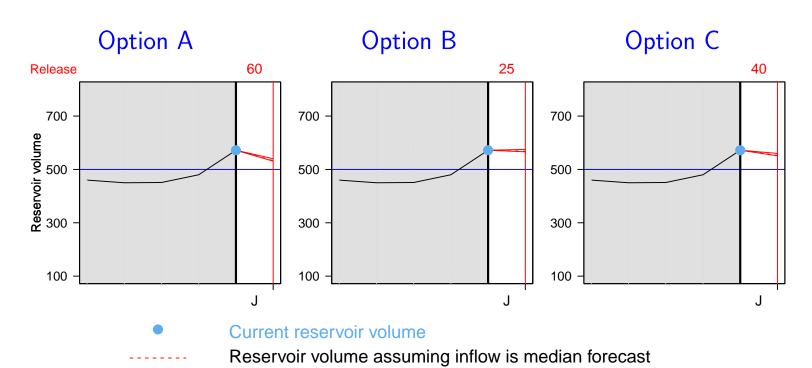
It is July 1st.

The reservoir is at $572 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

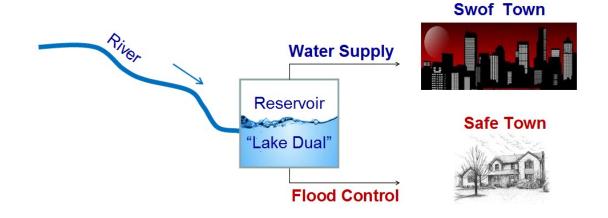
July inflow was: $22 Mm^3$

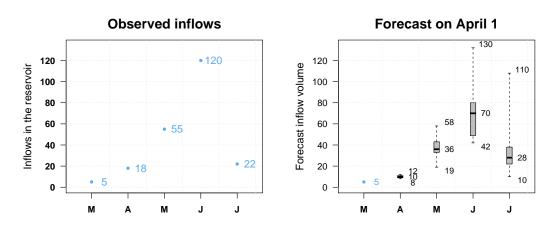
Our volunteer's July release was: $40 Mm^3$

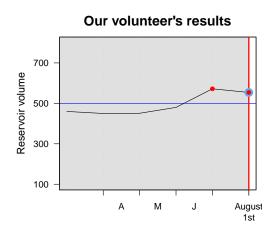
The volume on August 1st is therefore:

 $572 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 554 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

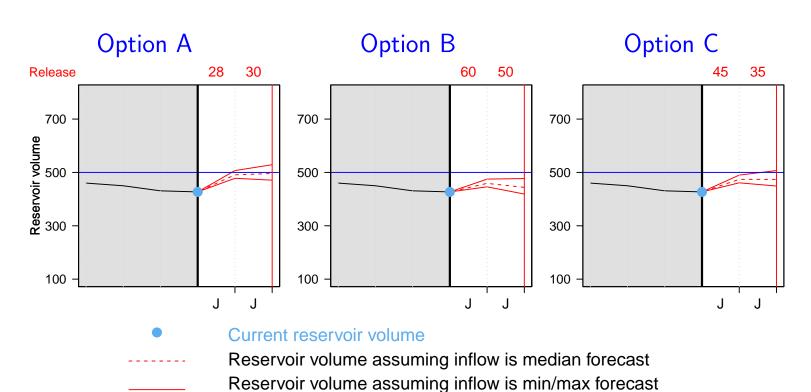
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

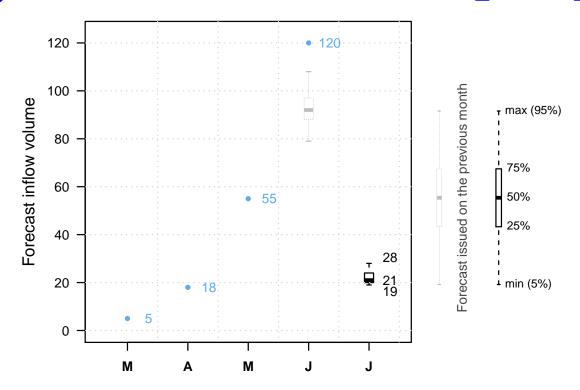
The volume on July 1st is therefore:

427
$$Mm^3 + 120 Mm^3 - 60 Mm^3 = 487 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

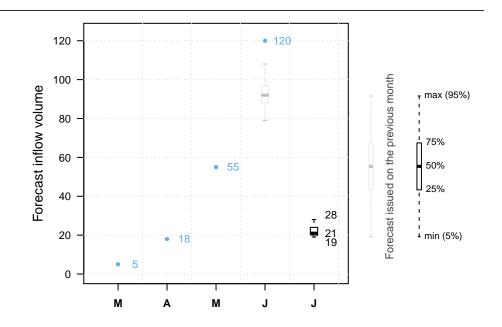


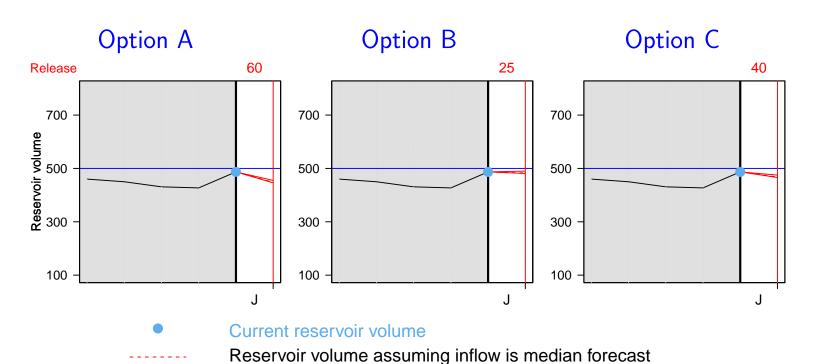
It is July 1st.

The reservoir is at 487 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

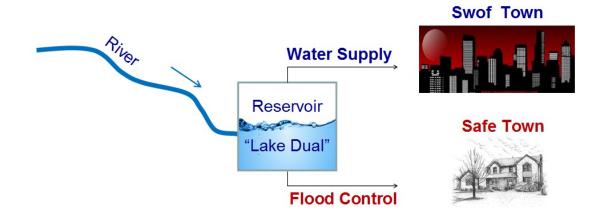
July inflow was: $22 Mm^3$

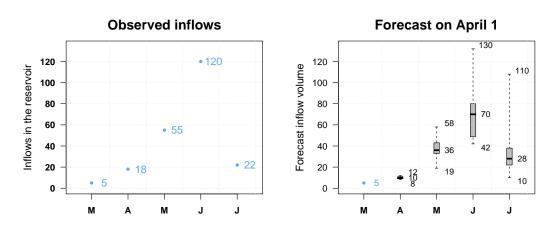
Our volunteer's July release was: 40 Mm^3

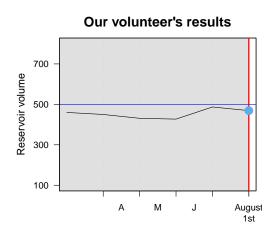
The volume on August 1st is therefore:

$$487 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 469 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

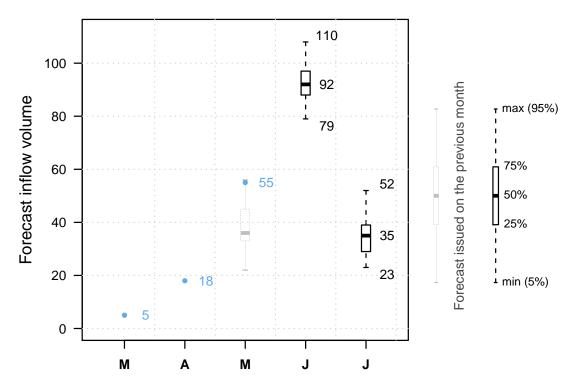
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

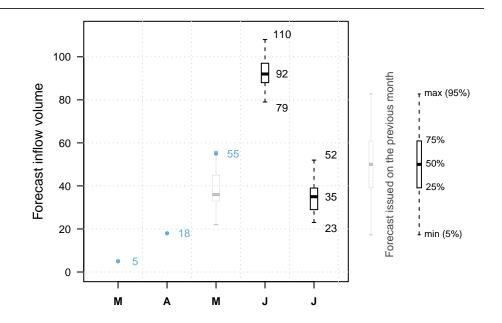


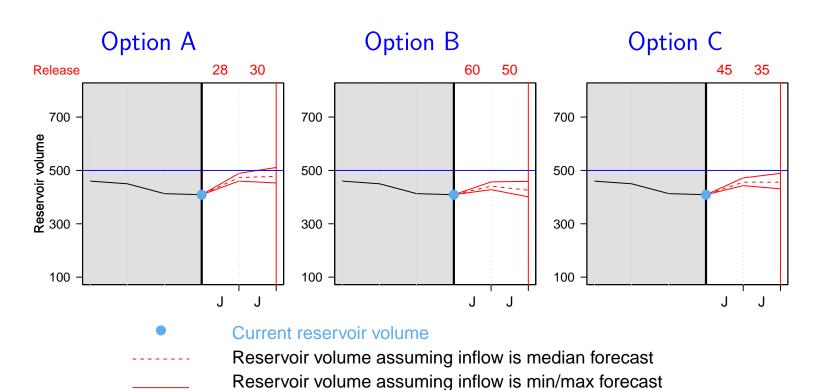
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

$$409 \ Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 469 \ Mm^3$$

No overtop!

The volunteer still has a job!

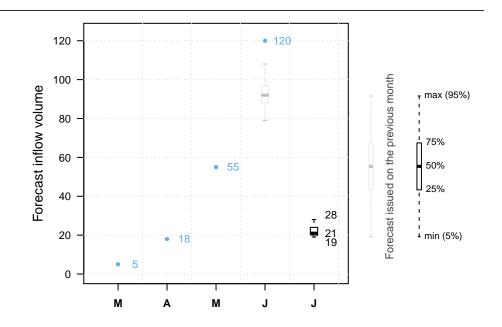
Let's go to the next forecast!

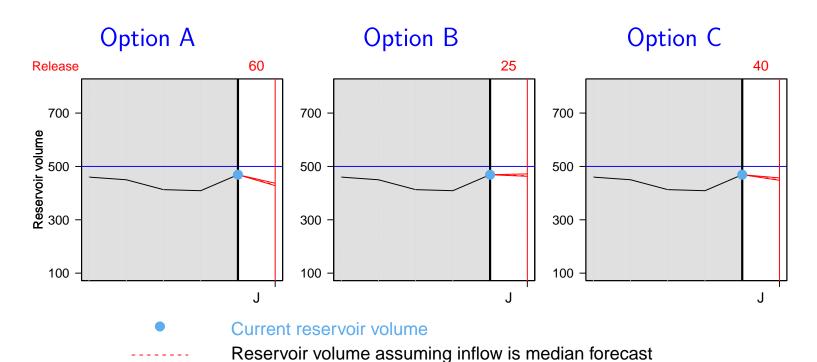
It is July 1st.

The reservoir is at 469 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

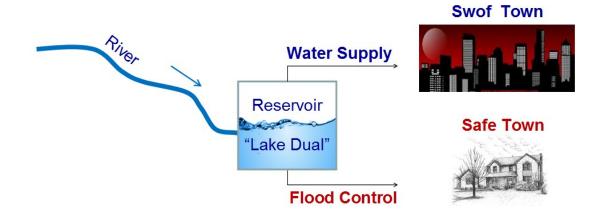
July inflow was: $22 Mm^3$

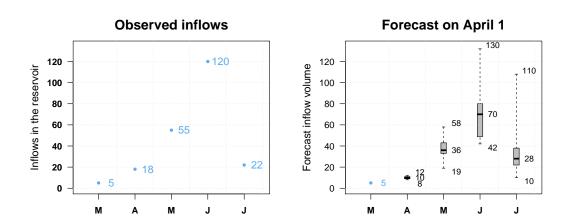
Our volunteer's July release was: 40 Mm^3

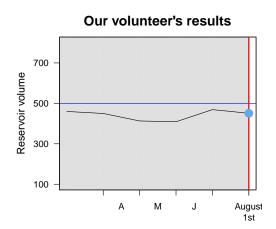
The volume on August 1st is therefore:

$$469 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 451 \ Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

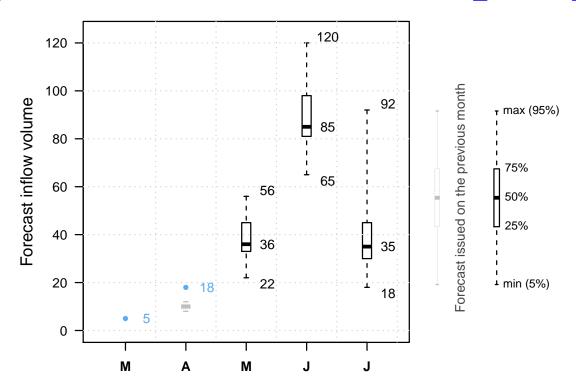
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

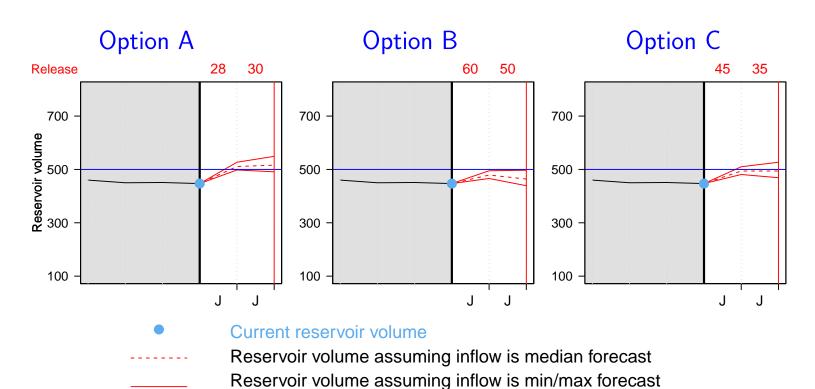
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

447 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 507 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

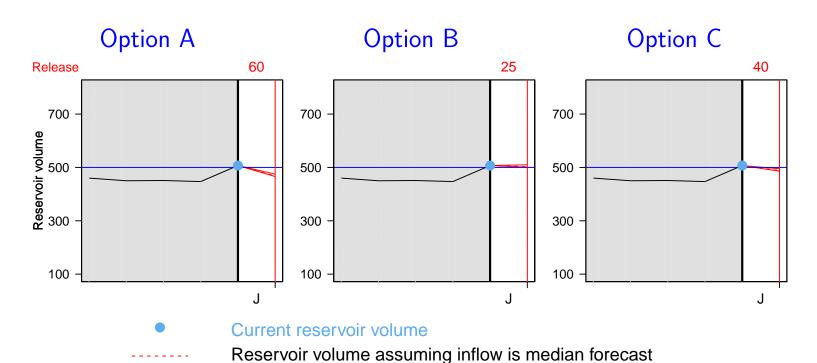
It is July 1st.

The reservoir is at $507 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

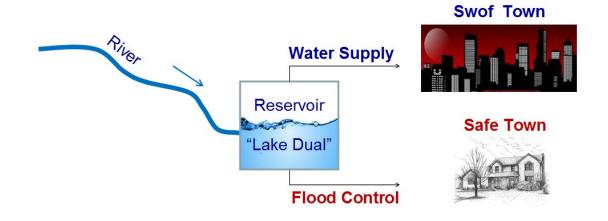
July inflow was: $22 Mm^3$

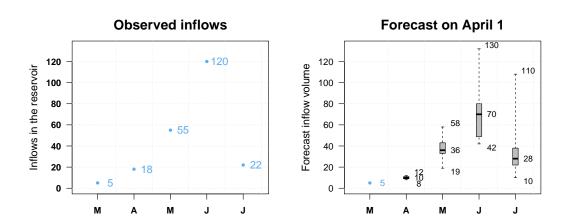
Our volunteer's July release was: 40 Mm^3

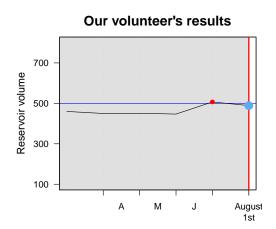
The volume on August 1st is therefore:

$$507 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 489 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

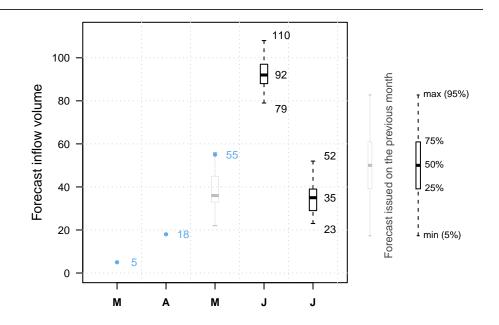
Let's go to the next forecast!

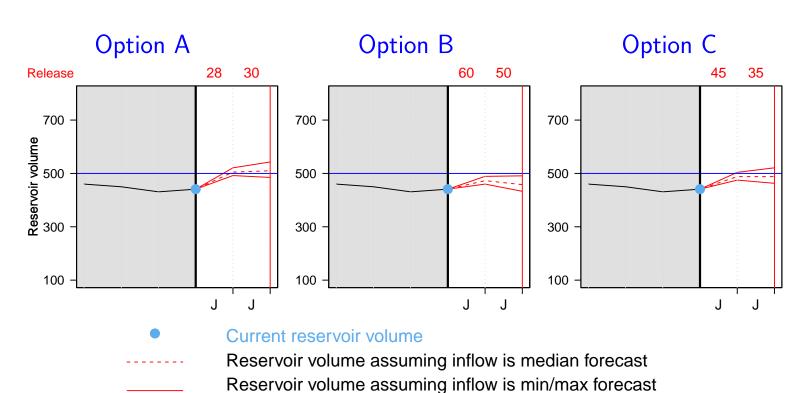
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

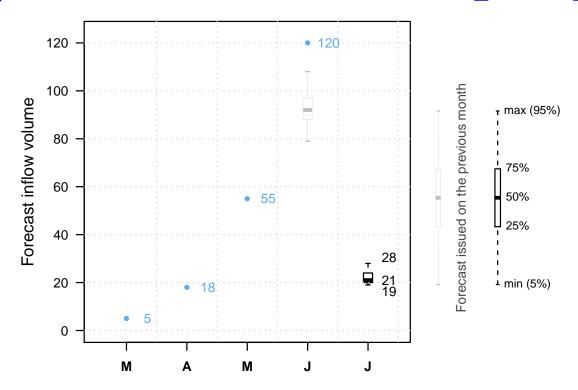
The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 501 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

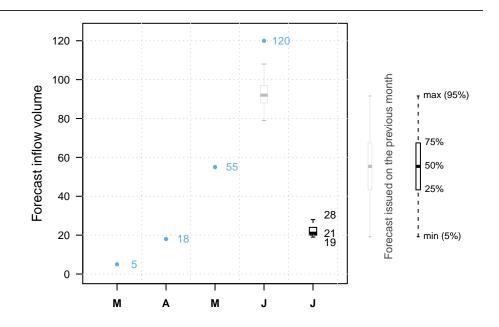


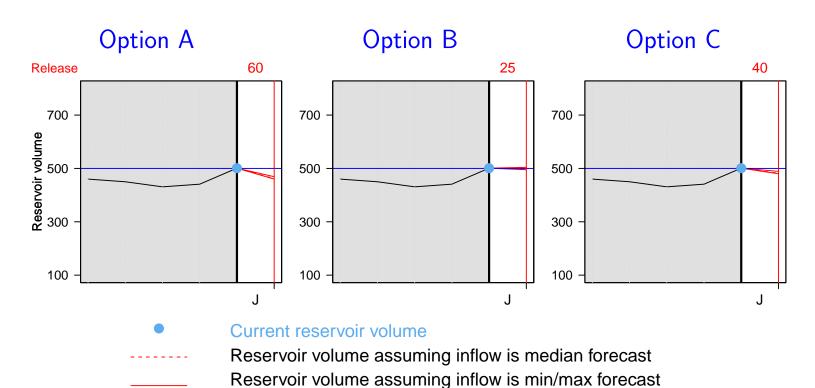
It is July 1st.

The reservoir is at $501 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

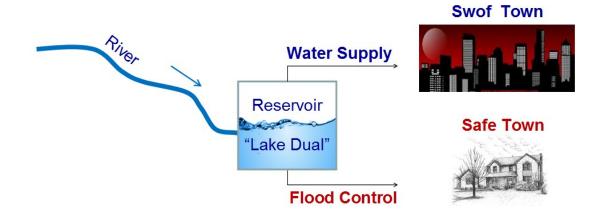
July inflow was: $22 Mm^3$

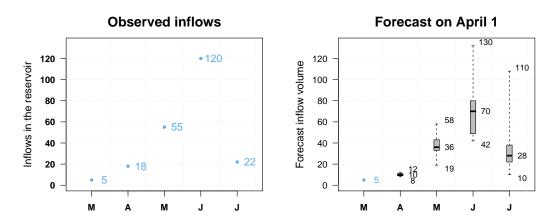
Our volunteer's July release was: 40 Mm^3

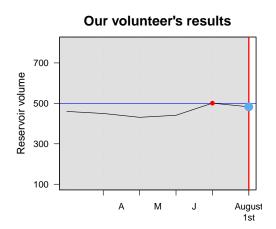
The volume on August 1st is therefore:

$$501 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 483 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

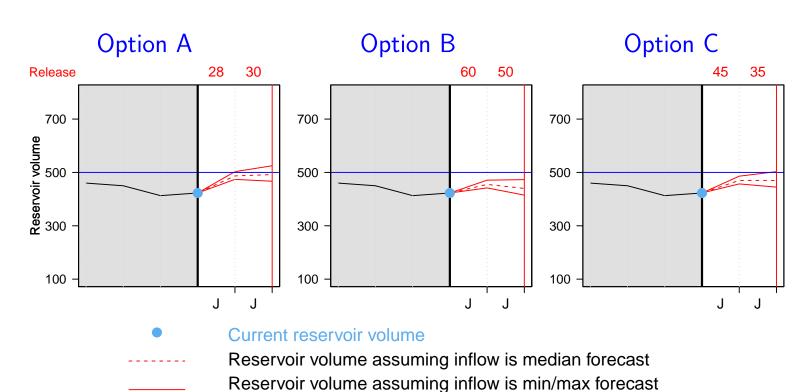
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

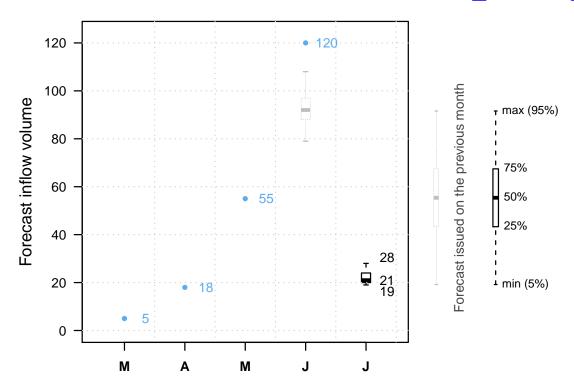
The volume on July 1st is therefore:

423
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 483 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

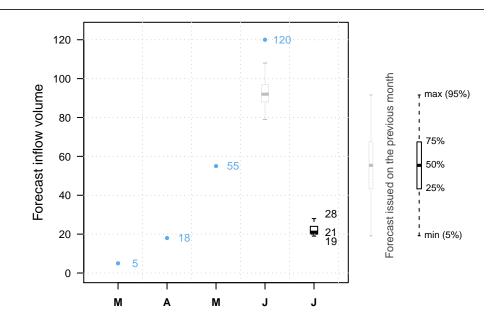


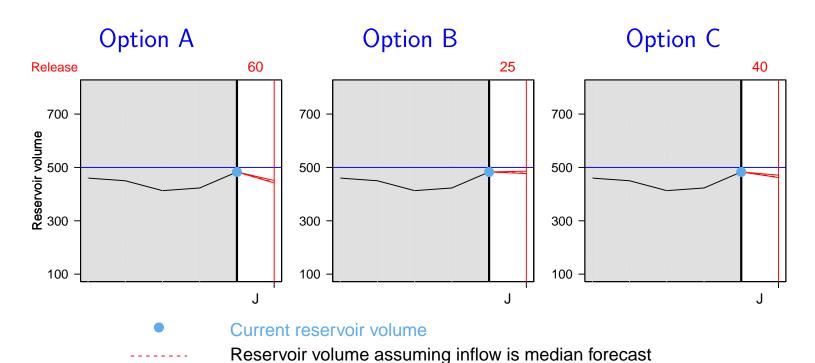
It is July 1st.

The reservoir is at 483 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

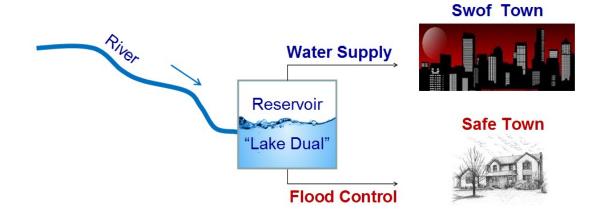
July inflow was: $22 Mm^3$

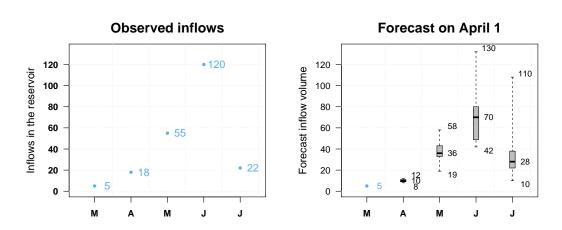
Our volunteer's July release was: 40 Mm^3

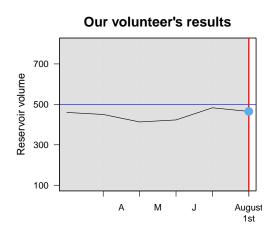
The volume on August 1st is therefore:

483
$$Mm^3 + 22 Mm^3 - 40 Mm^3 = 465 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

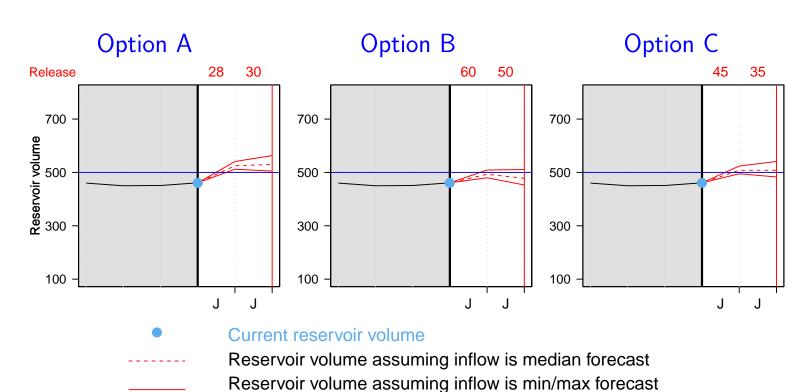
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

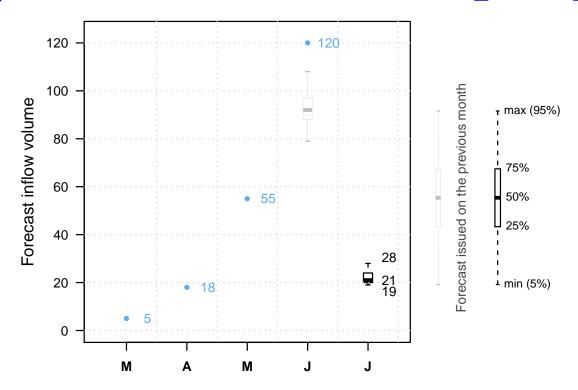
The volume on July 1st is therefore:

461
$$Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 521 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

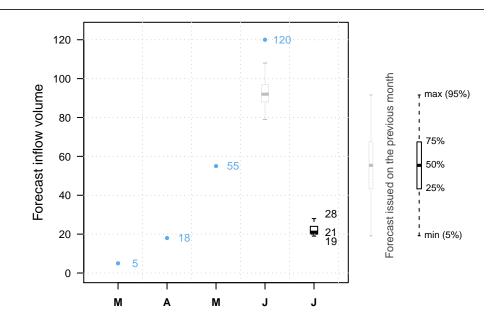


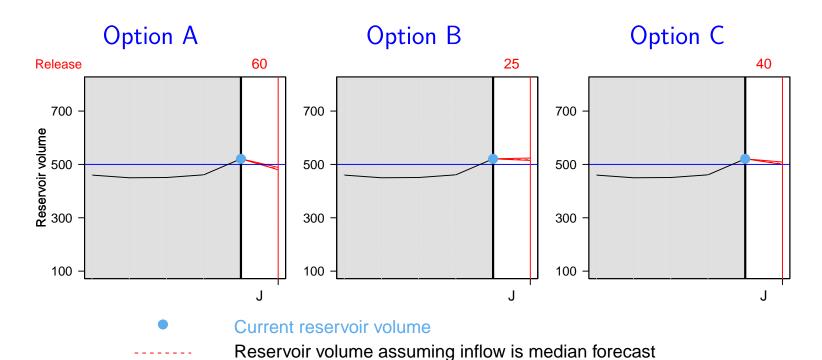
It is July 1st.

The reservoir is at $521 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

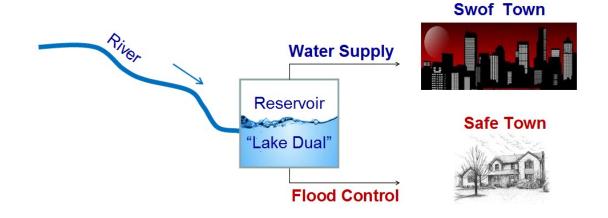
July inflow was: $22 Mm^3$

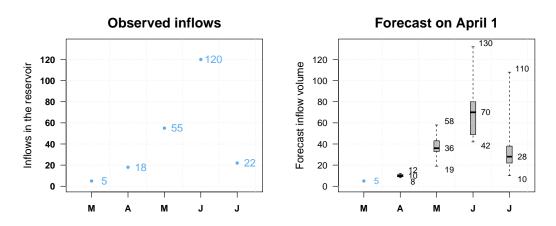
Our volunteer's July release was: $40 Mm^3$

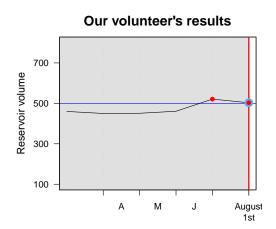
The volume on August 1st is therefore:

 $521 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 503 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

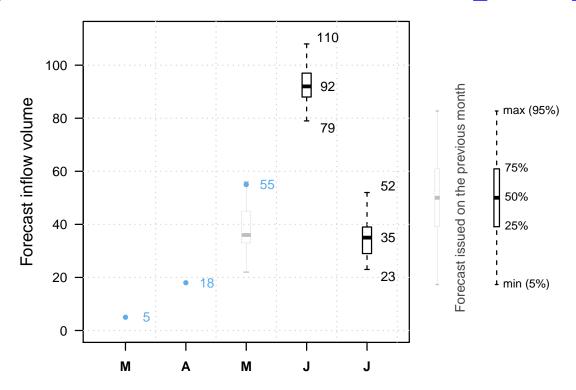
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

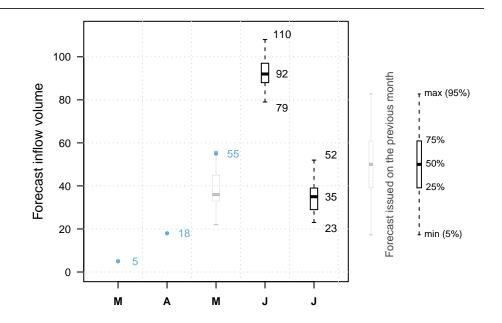


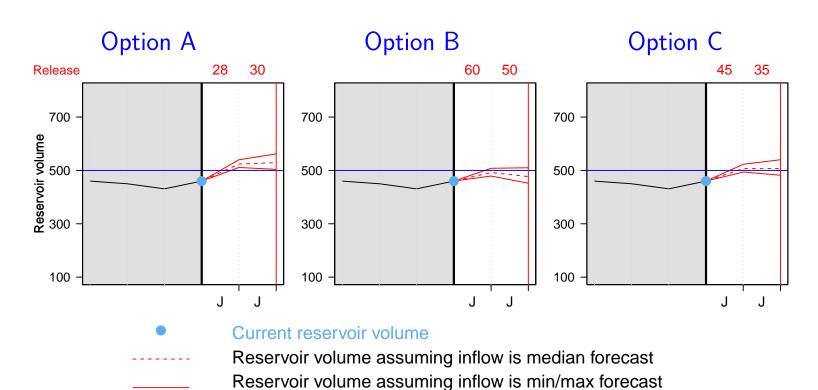
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

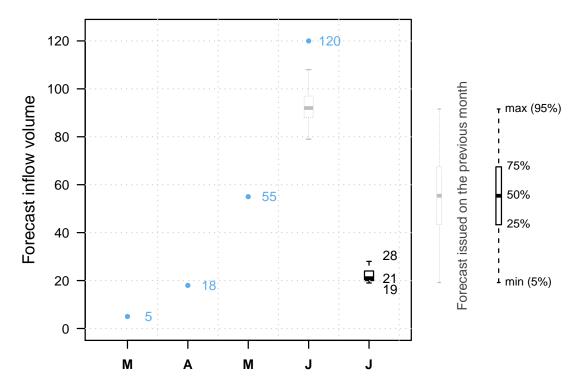
The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 60 Mm^3 = 520 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



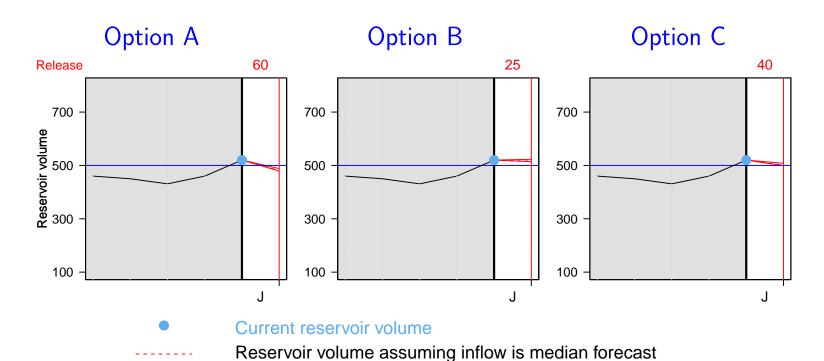
It is July 1st.

The reservoir is at $520 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

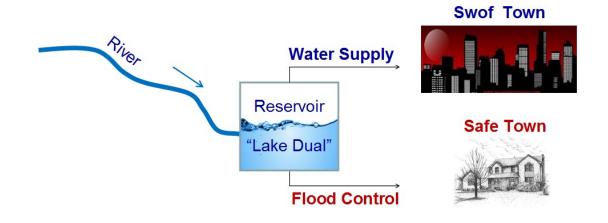
July inflow was: $22 Mm^3$

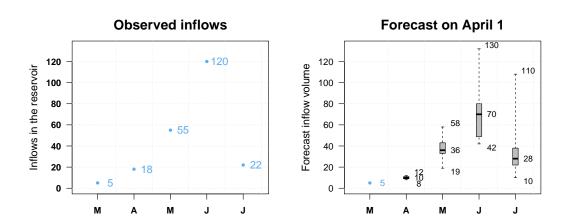
Our volunteer's July release was: $40 Mm^3$

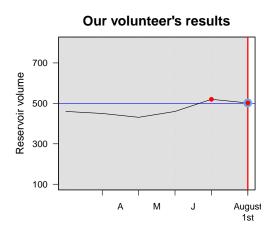
The volume on August 1st is therefore:

 $520 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 502 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

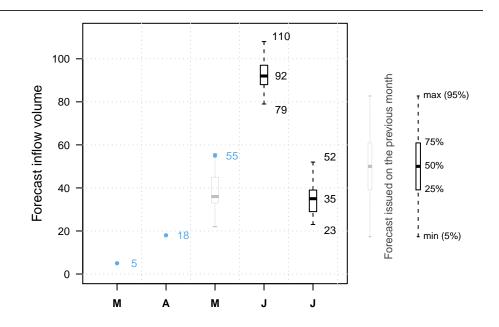
Let's go to the next forecast!

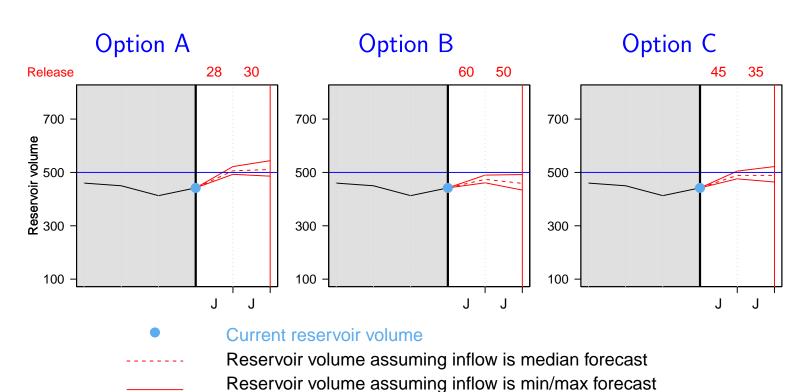
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

442 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

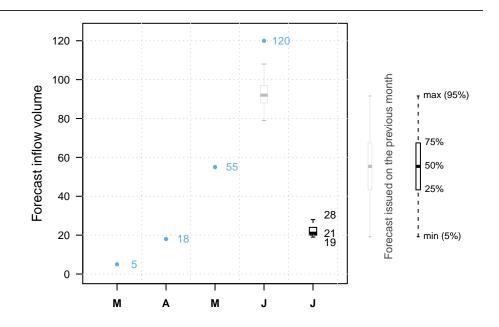
Can it be fixed?

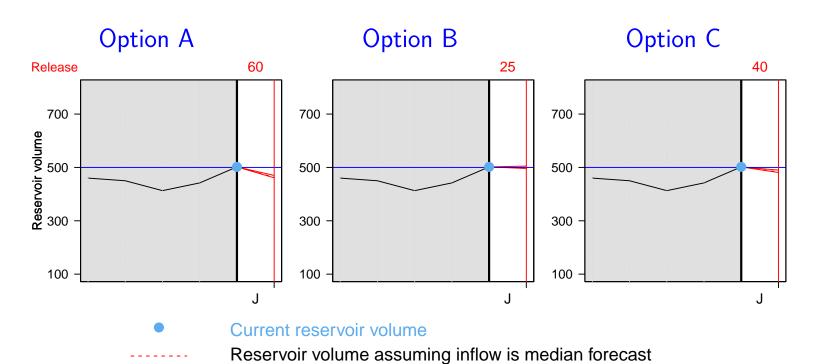
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

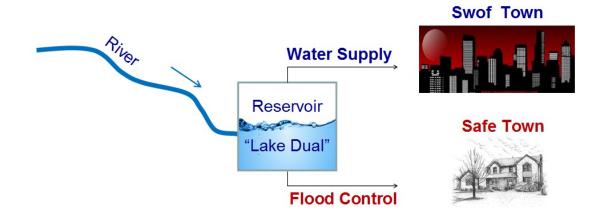
July inflow was: $22 Mm^3$

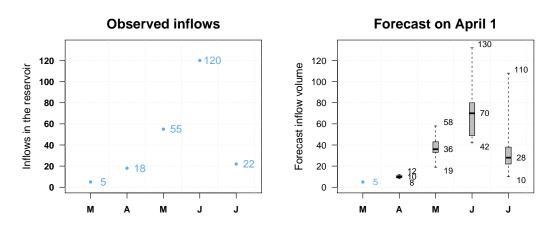
Our volunteer's July release was: $40 Mm^3$

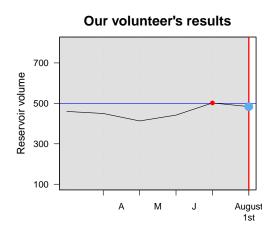
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 484 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

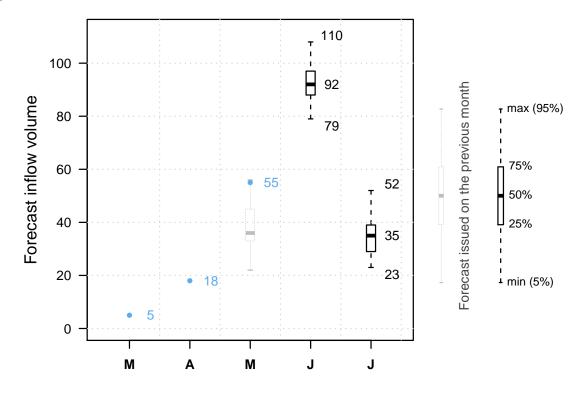
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

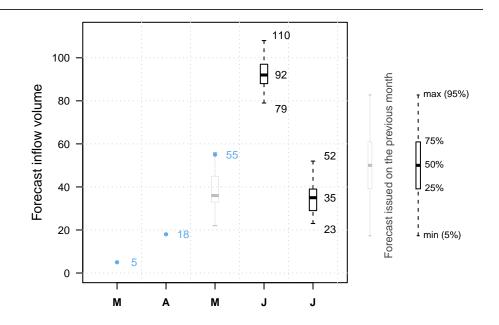


It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $60 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 \ Mm^3 - 60 \ Mm^3 = 540 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

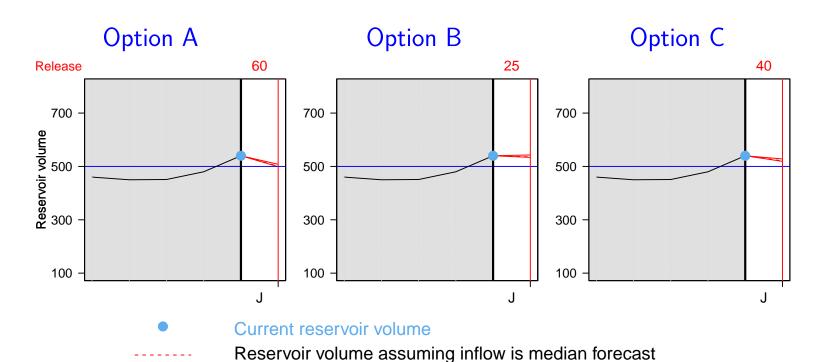
It is July 1st.

The reservoir is at $540 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

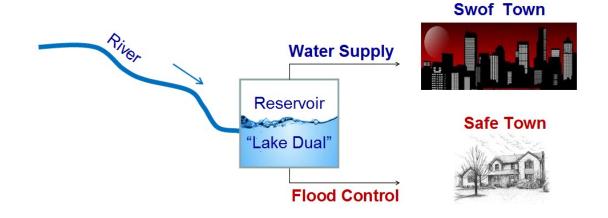
July inflow was: $22 Mm^3$

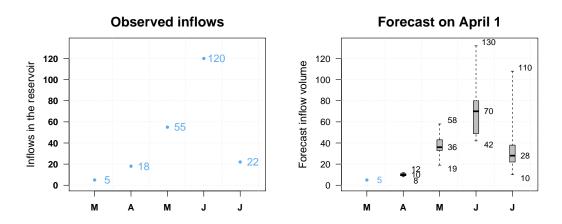
Our volunteer's July release was: $40 Mm^3$

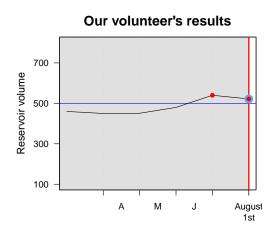
The volume on August 1st is therefore:

 $540 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 522 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$431 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 427 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

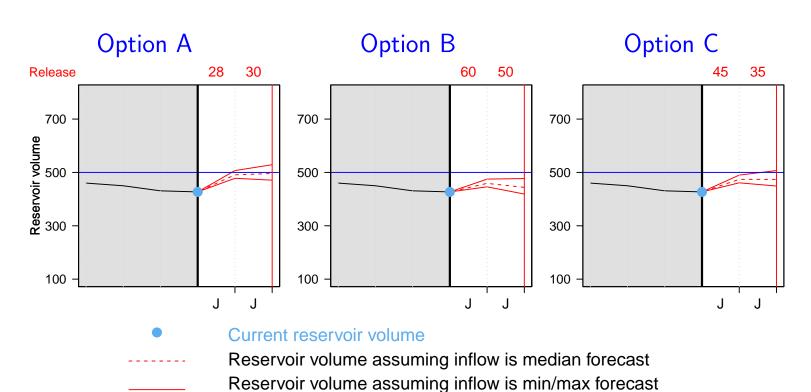
It is June 1st.

The reservoir is at $427 Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

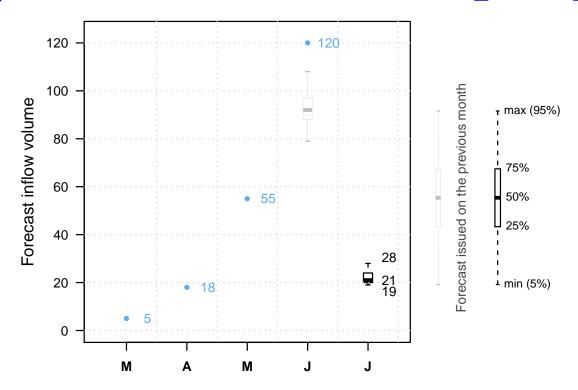
The volume on July 1st is therefore:

 $427 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 502 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

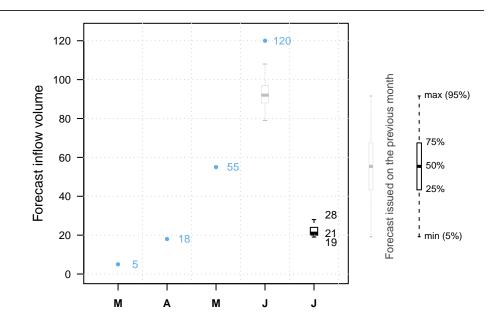


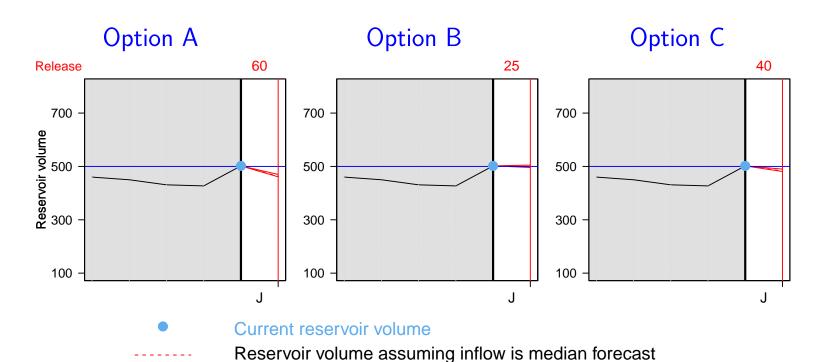
It is July 1st.

The reservoir is at $502 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

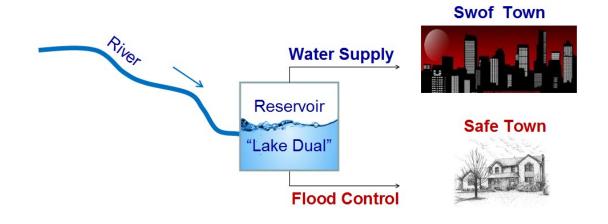
July inflow was: $22 Mm^3$

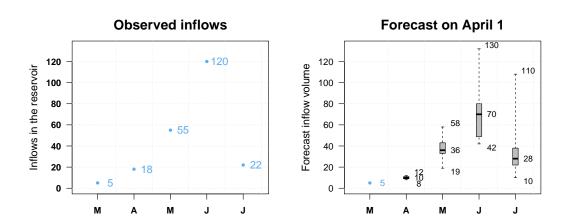
Our volunteer's July release was: $40 Mm^3$

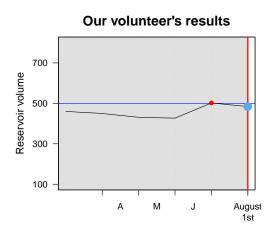
The volume on August 1st is therefore:

$$502 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 484 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

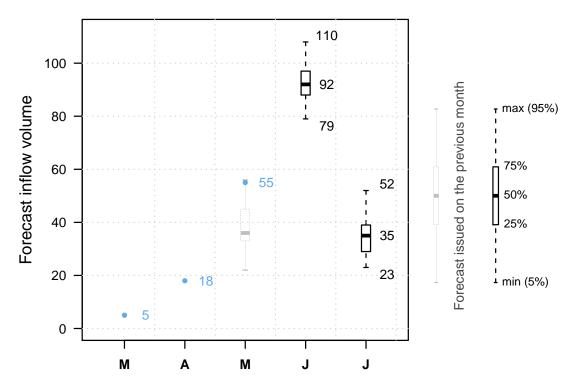
The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 59 Mm^3 = 409 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

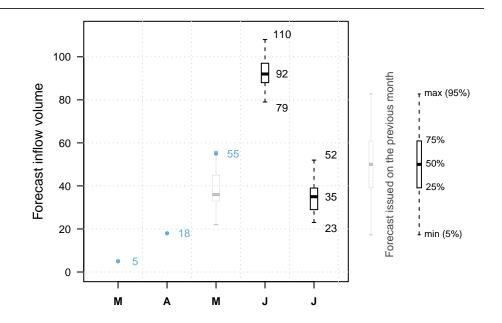


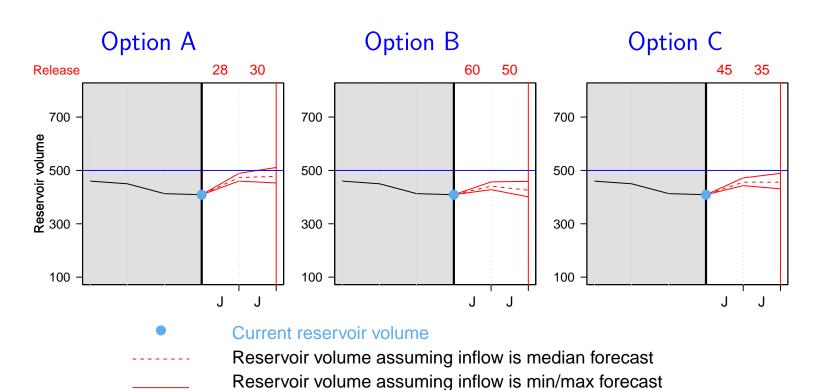
It is June 1st.

The reservoir is at 409 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

409
$$Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 484 \ Mm^3$$

No overtop!

The volunteer still has a job!

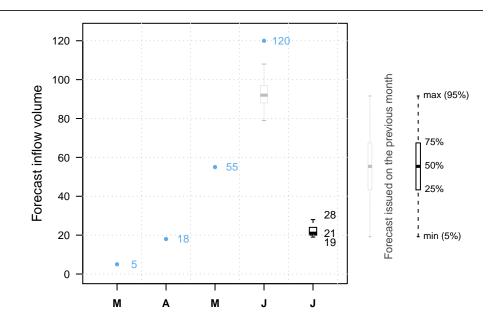
Let's go to the next forecast!

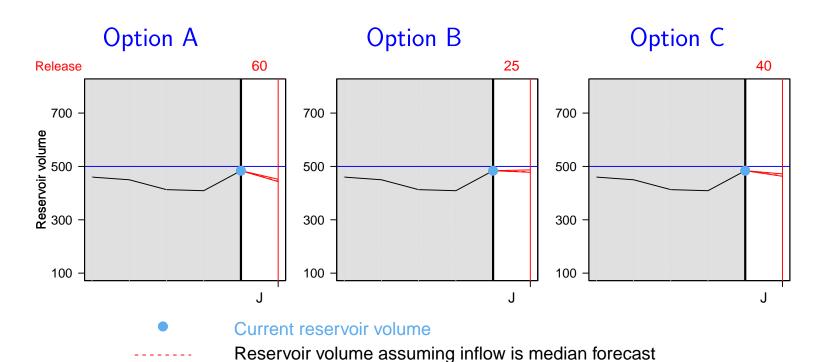
It is July 1st.

The reservoir is at 484 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

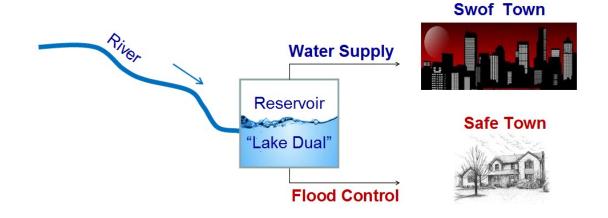
July inflow was: $22 Mm^3$

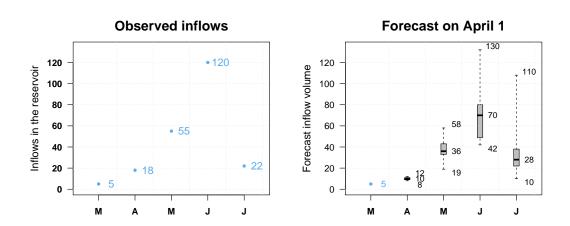
Our volunteer's July release was: 40 Mm^3

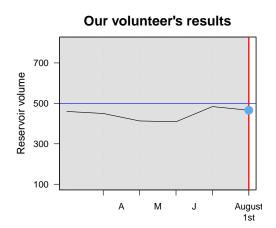
The volume on August 1st is therefore:

484
$$Mm^3 + 22 Mm^3 - 40 Mm^3 = 466 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $59 Mm^3$

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 59 \ Mm^3 = 447 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

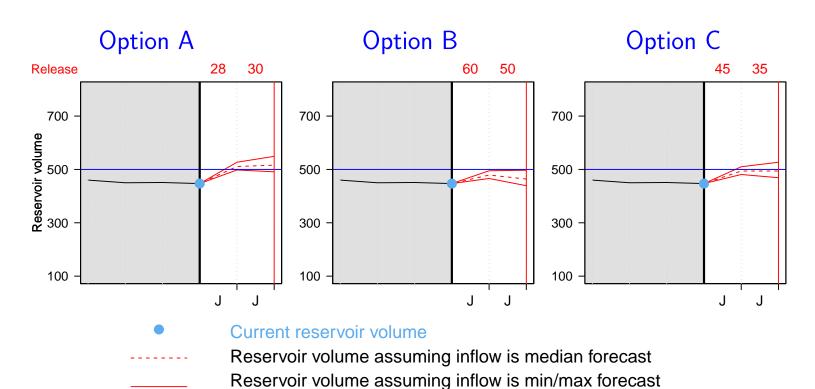
It is June 1st.

The reservoir is at 447 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 \ Mm^3$

Our volunteer's June release was: 45 Mm^3

The volume on July 1st is therefore:

447 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 522 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

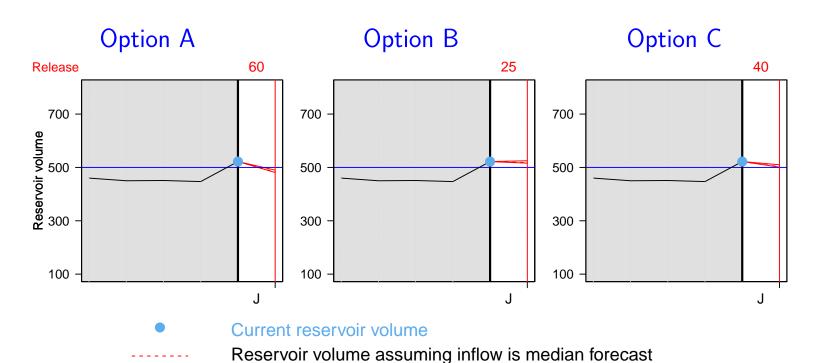
It is July 1st.

The reservoir is at $522 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

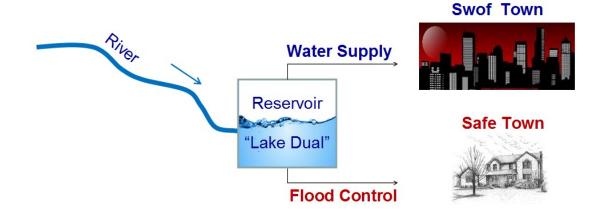
July inflow was: $22 Mm^3$

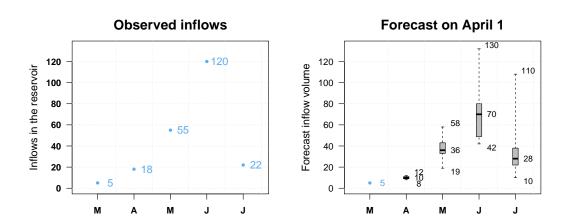
Our volunteer's July release was: $40 Mm^3$

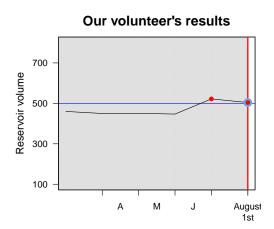
The volume on August 1st is therefore:

 $522 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 504 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume + 55 Mm^3 - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

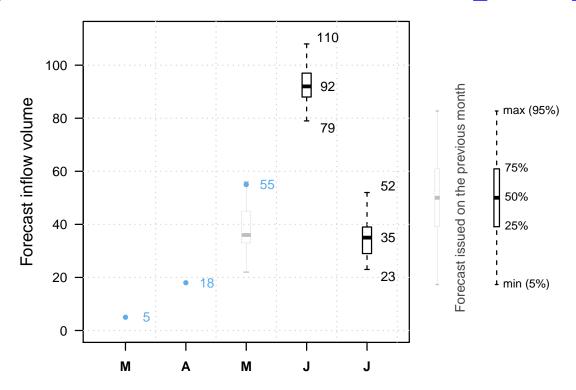
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 441 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

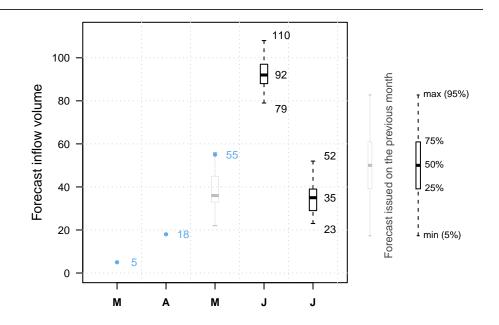


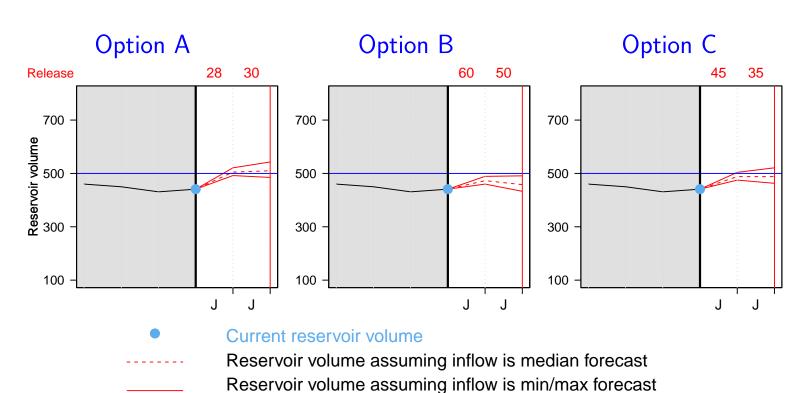
It is June 1st.

The reservoir is at 441 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

The volume on July 1st is therefore:

441 $Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 516 \ Mm^3$

Overtop!

The volunteer got fired!

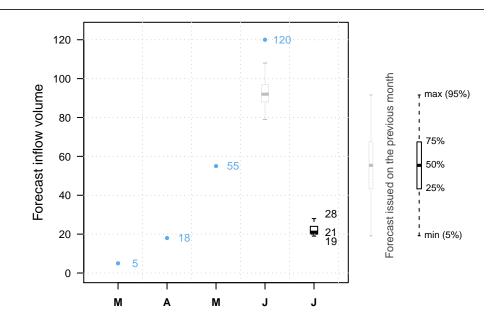
Can it be fixed?

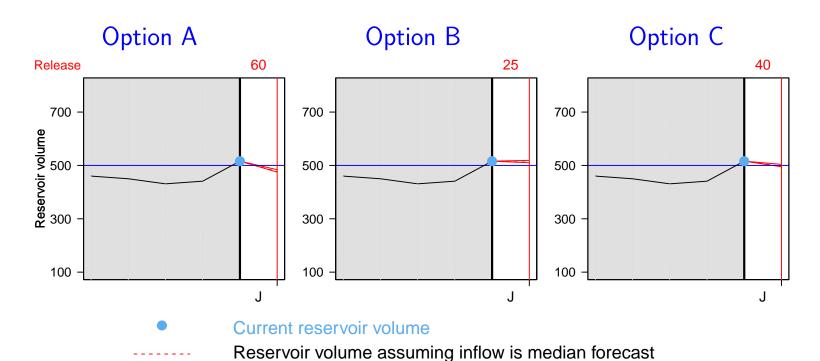
It is July 1st.

The reservoir is at $516 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

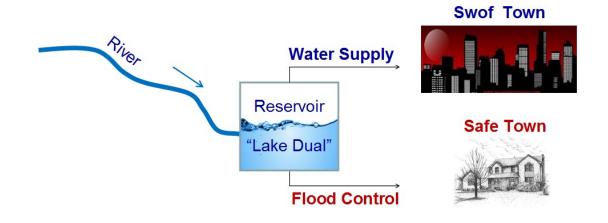
July inflow was: $22 Mm^3$

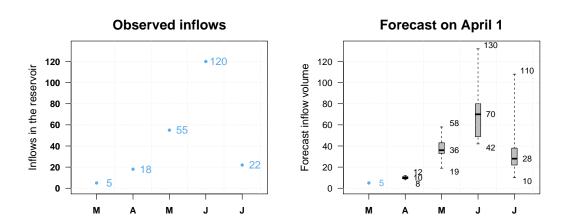
Our volunteer's July release was: 40 Mm^3

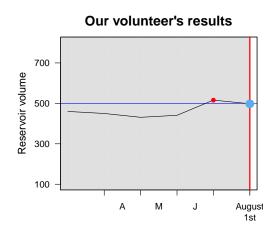
The volume on August 1st is therefore:

$$516 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 498 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 45 Mm^3 = 423 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

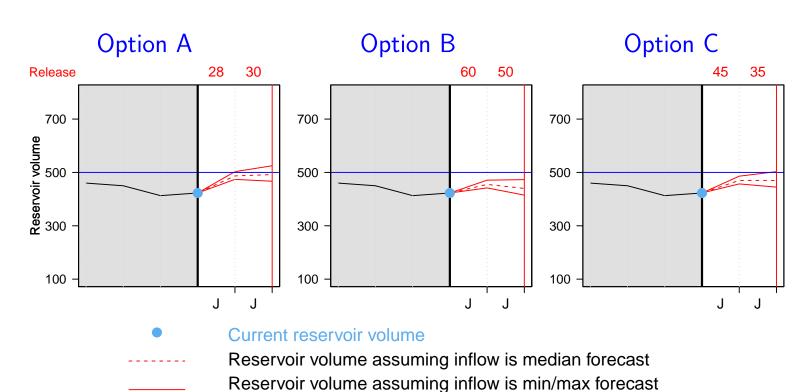
It is June 1st.

The reservoir is at 423 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

423
$$Mm^3 + 120 Mm^3 - 45 Mm^3 = 498 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

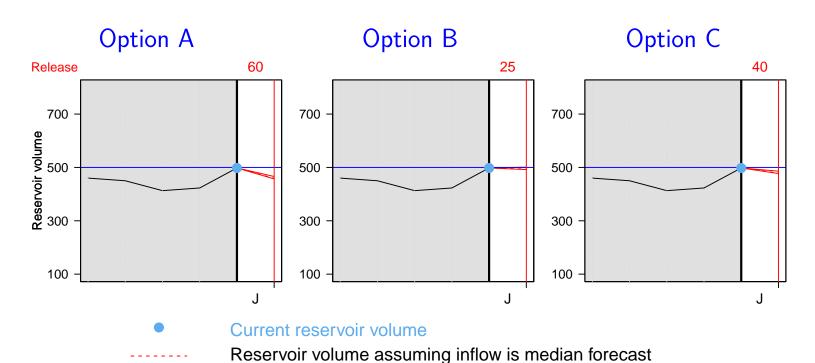
It is July 1st.

The reservoir is at 498 Mm^3

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

July has gone by.

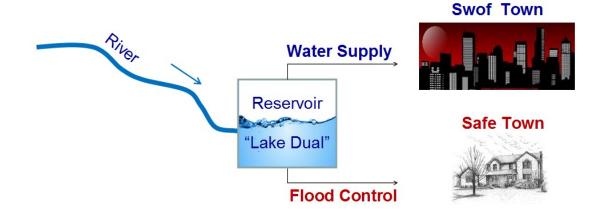
July inflow was: $22 Mm^3$

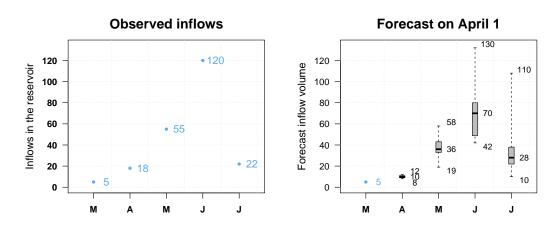
Our volunteer's July release was: 40 Mm^3

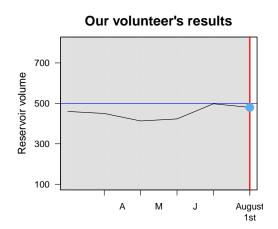
The volume on August 1st is therefore:

498
$$Mm^3 + 22 Mm^3 - 40 Mm^3 = 480 Mm^3$$

No overtop!


The volunteer still has a job!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: 45 Mm^3

The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 45 \ Mm^3 = 461 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

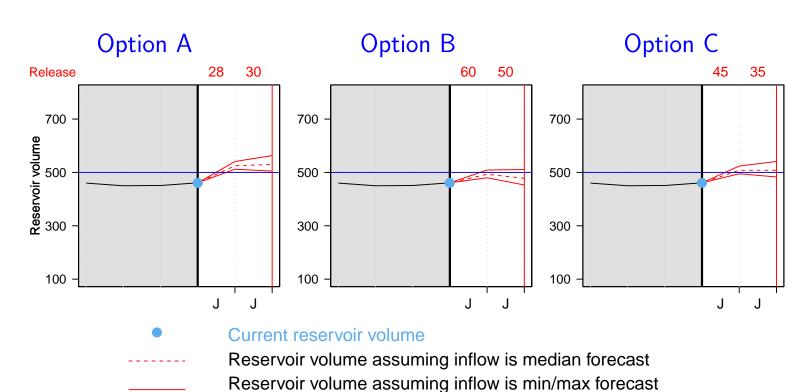
It is June 1st.

The reservoir is at 461 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

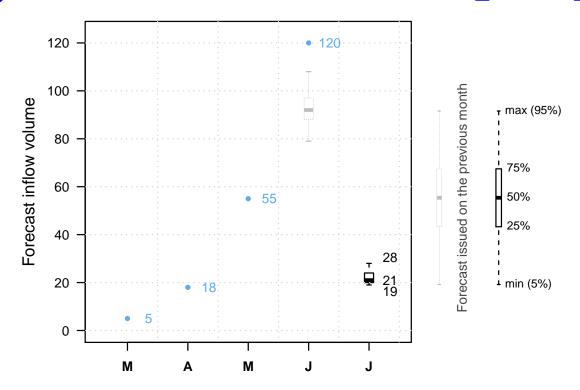
The volume on July 1st is therefore:

 $461 \ Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 536 \ Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?



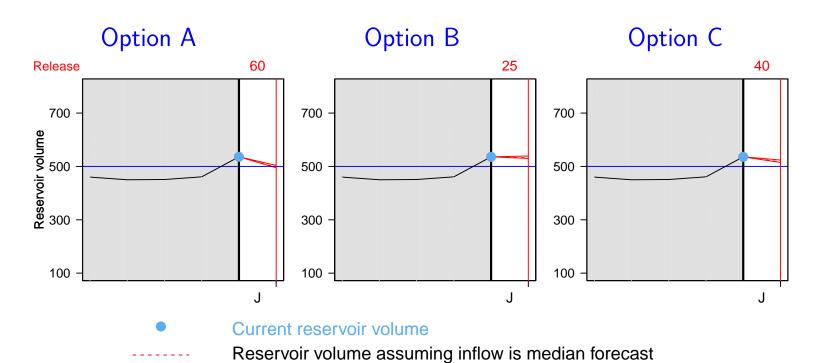
It is July 1st.

The reservoir is at $536 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

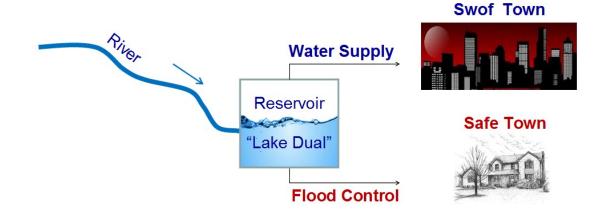
July inflow was: $22 Mm^3$

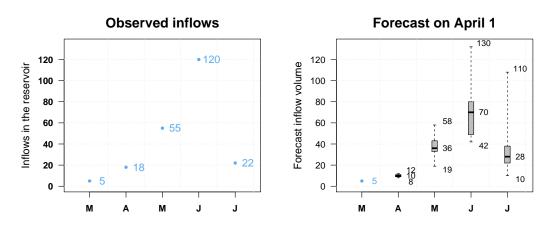
Our volunteer's July release was: $40 Mm^3$

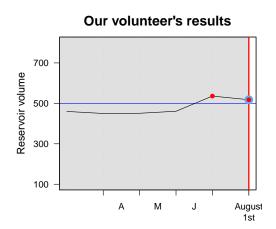
The volume on August 1st is therefore:

 $536 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 518 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $37 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 37 \ Mm^3 = 431 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 431 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

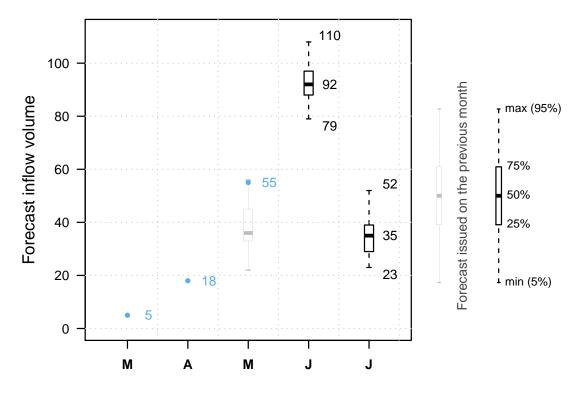
The volume on June 1st is therefore:

431
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 460 Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

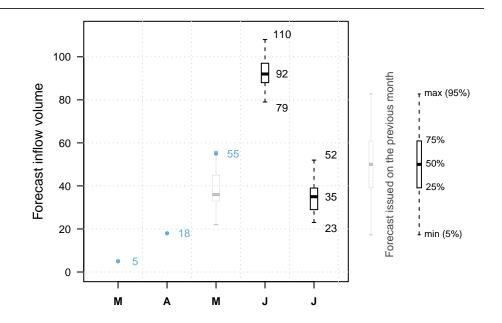


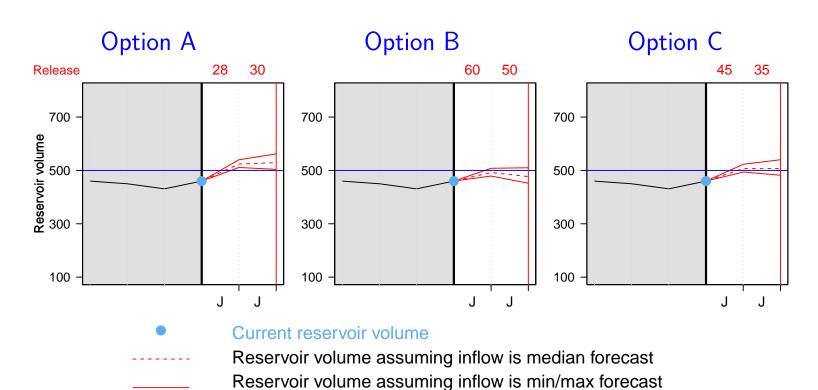
It is June 1st.

The reservoir is at 460 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

460 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 535 Mm^3$

Overtop!

The volunteer got fired!

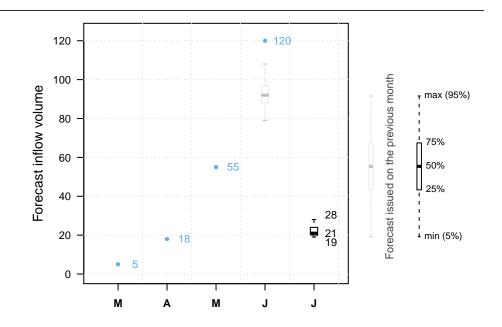
Can it be fixed?

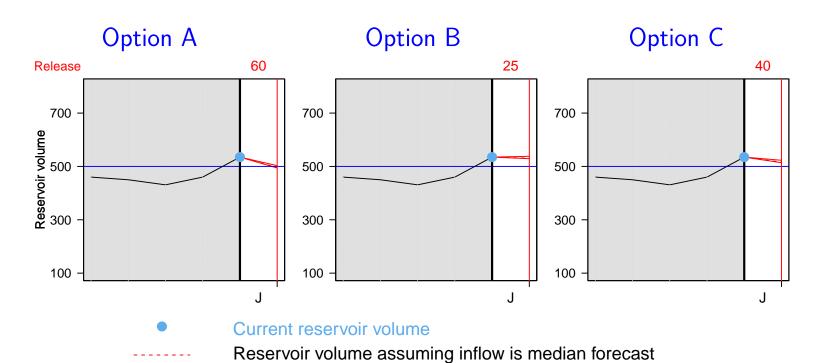
It is July 1st.

The reservoir is at $535 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

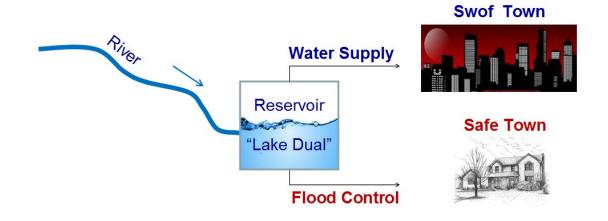
July inflow was: $22 Mm^3$

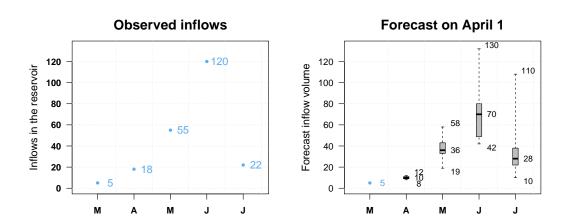
Our volunteer's July release was: $40 Mm^3$

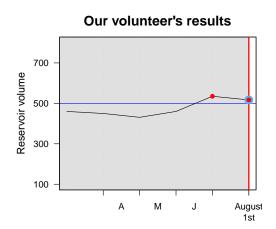
The volume on August 1st is therefore:

 $535 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 517 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $55 Mm^3$

The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 55 \ Mm^3 = 413 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!

It is May 1st.

The reservoir is at 413 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

The volume on June 1st is therefore:

413
$$Mm^3 + 55 Mm^3 - 26 Mm^3 = 442 Mm^3$$

No overtop!

The volunteer still has a job!

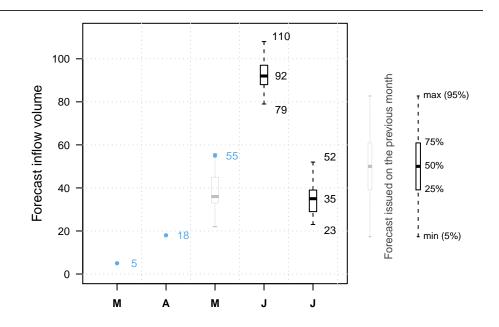
Let's go to the next forecast!

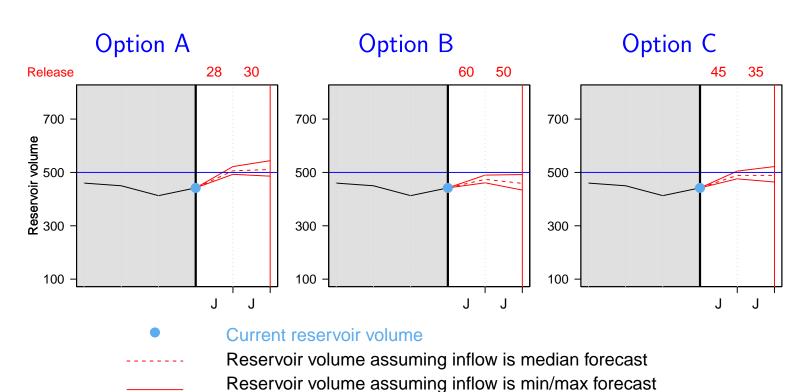
It is June 1st.

The reservoir is at $442 \ Mm^3$

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: 45 Mm^3

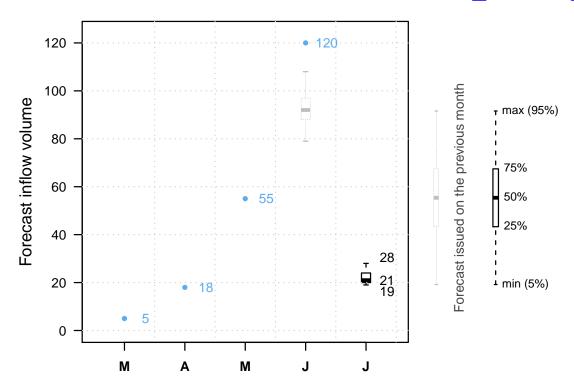
The volume on July 1st is therefore:

442
$$Mm^3 + 120 \ Mm^3 - 45 \ Mm^3 = 517 \ Mm^3$$

Overtop!

The volunteer got fired!

Can it be fixed?

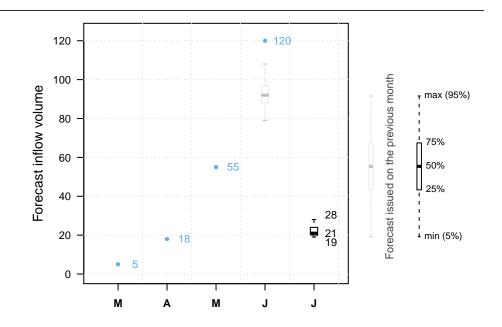


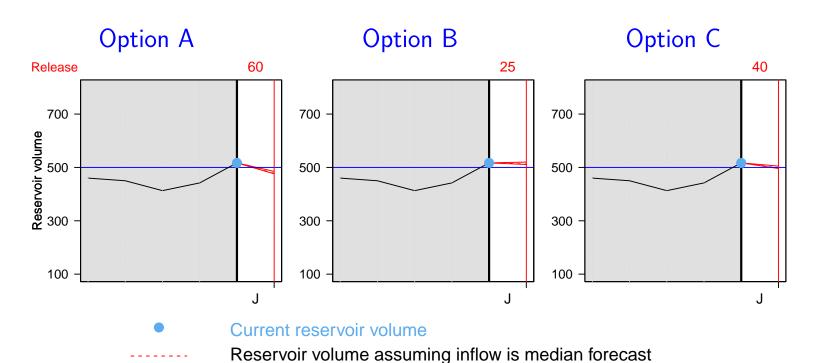
It is July 1st.

The reservoir is at $517 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3


Reservoir should be close to 500 Mm^3 on August 1st.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

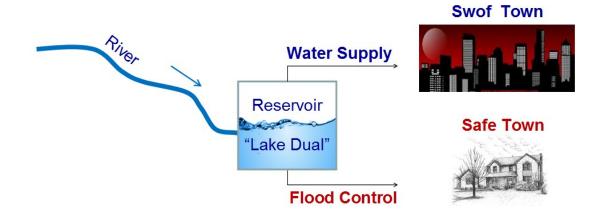
July inflow was: $22 Mm^3$

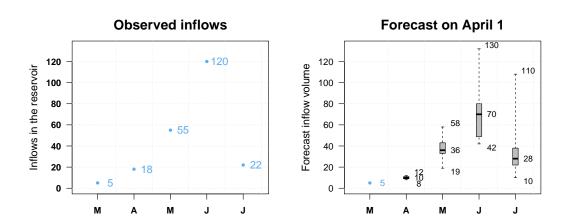
Our volunteer's July release was: 40 Mm^3

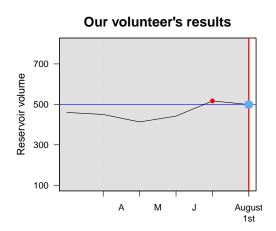
The volume on August 1st is therefore:

$$517 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 499 \ Mm^3$$

No overtop!


The volunteer got the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?

It is April 1st.

The reservoir is at 450 Mm^3

You are given the inflow forecasts on April 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is April 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

April has gone by.

April inflow was: $18 Mm^3$

You can update your reservoir volume:

The volume on May 1st is:

April 1 volume + 18 Mm^3 - April release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

April has gone by.

April inflow was: $18 Mm^3$

Our volunteer's April release was: $17 Mm^3$

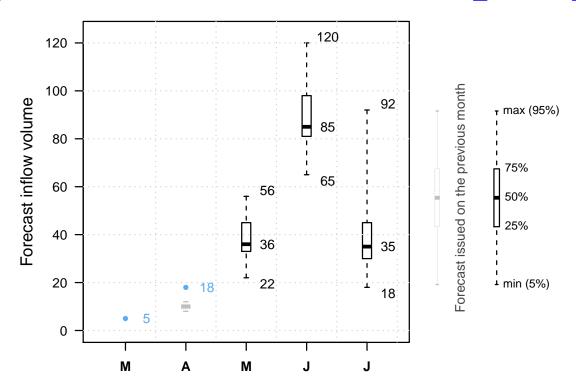
The volume on May 1st is therefore:

$$450 \ Mm^3 + 18 \ Mm^3 - 17 \ Mm^3 = 451 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



It is May 1st.

The reservoir is at 451 Mm^3

You are given the inflow forecasts on May 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.

It is May 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

May has gone by.

May inflow was: $55 Mm^3$

You can update your reservoir volume:

The volume on June 1st is:

May 1 volume $+ 55 Mm^3$ - May release = ?

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

May has gone by.

May inflow was: $55 Mm^3$

Our volunteer's May release was: $26 Mm^3$

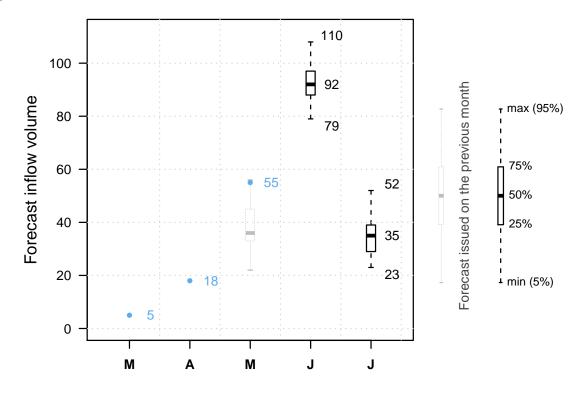
The volume on June 1st is therefore:

$$451 \ Mm^3 + 55 \ Mm^3 - 26 \ Mm^3 = 480 \ Mm^3$$

No overtop!

The volunteer still has a job!

Let's go to the next forecast!



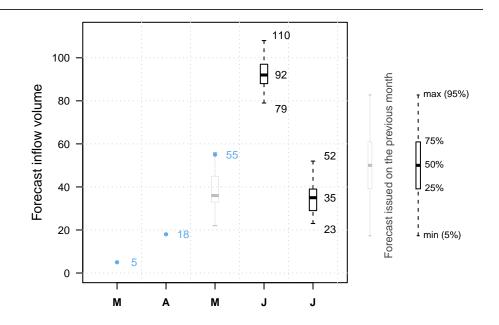
It is June 1st.

The reservoir is at 480 Mm^3

You are given the inflow forecasts on June 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.


If the volume exceeds 500 Mm^3 , you are fired.

It is June 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

June has gone by.

June inflow was: $120 \ Mm^3$

You can update your reservoir volume:

The volume on July 1st is:

June 1 volume $+ 120 Mm^3$ - June release = ?

Did you overtop your reservoir?

 \square NO, I still have my job.

☐ YES, I got fired...

June has gone by.

June inflow was: $120 Mm^3$

Our volunteer's June release was: $45 Mm^3$

The volume on July 1st is therefore:

480 $Mm^3 + 120 Mm^3 - 45 Mm^3 = 555 Mm^3$

Overtop!

The volunteer got fired!

Can it be fixed?

It is July 1st.

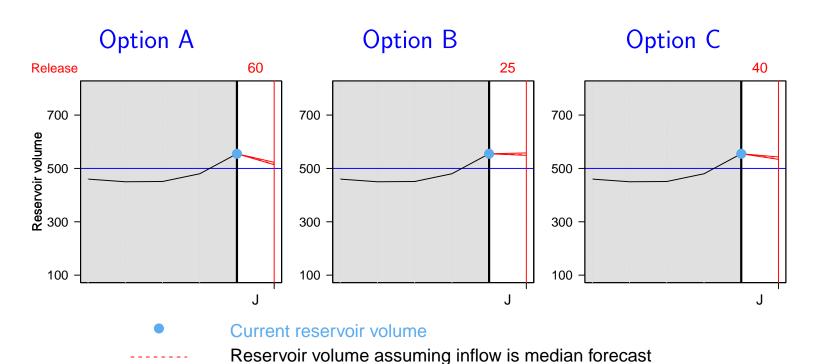
The reservoir is at $555 Mm^3$

You are given the inflow forecasts on July 1st.

Please fill in your release schedule. Remember: 15 $Mm^3 \leq$ Release \leq 60 Mm^3

Reservoir should be close to 500 Mm^3 on August 1st.

If the volume exceeds 500 Mm^3 , you are fired.



It is July 1st.

And our volunteer?

Let's see which release option our volunteer will choose.

Reservoir volume assuming inflow is min/max forecast

July has gone by.

July inflow was: $22 Mm^3$

You can update your reservoir volume:

The volume on August 1st is: $July 1 volume + 22 Mm^3 - July release = ?$

Did you overtop your reservoir?

□ NO, I still have my job.

☐ YES, I got fired...

July has gone by.

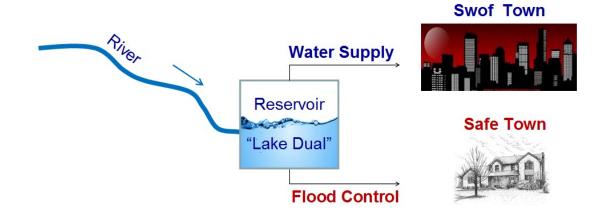
July inflow was: $22 Mm^3$

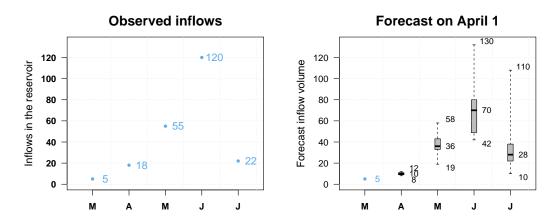
Our volunteer's July release was: $40 Mm^3$

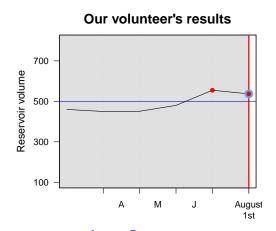
The volume on August 1st is therefore:

 $555 \ Mm^3 + 22 \ Mm^3 - 40 \ Mm^3 = 537 \ Mm^3$

Overtop!


The volunteer did not get the job back!


NEXT


GAME OVER

August 1st has arrived.

If you did not overtop the reservoir, you still have a job and you are hired for the next season!

How did you like this experience as a decision-maker?