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Vilhelm Bjerknes (1862-1951)

“Founding father of modern 

weather forecasting” 

Norwegian physicist who 

proposed weather forecasting as 

a deterministic initial value 

problem based on the laws of 

physics



Lewis Fry Richardson (1881-1953)

English scientist who produced the 

first numerical weather forecast

▪ Forecast for 20 May 1910 1pm by direct 

computation of the solutions to 

simplified flow equations using input 

data taken at 7am

▪ Forecast predicted rise in surface 

pressure by 145 hPa in 6 hours 

dramatic failure

▪ A posteriori: failure to apply smoothing 

to data to filter out unphysical waves



Lewis Fry Richardson (1881-1953)

Author of “Weather Prediction by 

Numerical Process” (1922)

Richardson devised a method of solving the

mathematical equations that describe

atmospheric flow by dividing the globe into cells

and specifying the dynamical variables at the

centre of each cell. In Chapter 11 of his book, he

presents what he calls a ‘fantasy’, describing in

detail his remarkable vision of an enormous

building, a fantastic forecast factory.



http://www.emetsoc.org/resources/rff



“After so much hard reasoning, may one play with a fantasy? Imagine a large hall like a theatre, except that the 

circles and galleries go right round through the space usually occupied by the stage. The walls of this chamber are 

painted to form a map of the globe. The ceiling represents the north polar regions, England is in the gallery, the 

tropics in the upper circle, Australia on the dress circle and the Antarctic in the pit.

A myriad computers are at work upon the weather of the part of the map where each sits, but each computer 

attends only to one equation or part of an equation. The work of each region is coordinated by an official of higher 

rank. Numerous little "night signs" display the instantaneous values so that neighbouring computers can read 

them. Each number is thus displayed in three adjacent zones so as to maintain communication to the North and 

South on the map.

From the floor of the pit a tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits

the man in charge of the whole theatre; he is surrounded by several assistants and messengers. One of his duties 

is to maintain a uniform speed of progress in all parts of the globe. In this respect he is like the conductor of an 

orchestra in which the instruments are slide-rules and calculating machines. But instead of waving a baton he 

turns a beam of rosy light upon any region that is running ahead of the rest, and a beam of blue light upon those 

who are behindhand.

Four senior clerks in the central pulpit are collecting the future weather as fast as it is being computed, and 

dispatching it by pneumatic carrier to a quiet room. There it will be coded and telephoned to the radio transmitting 

station. Messengers carry piles of used computing forms down to a storehouse in the cellar.

In a neighbouring building there is a research department, where they invent improvements. But there is much 

experimenting on a small scale before any change is made in the complex routine of the computing theatre. In a 

basement an enthusiast is observing eddies in the liquid lining of a huge spinning bowl, but so far the arithmetic 

proves the better way. In another building are all the usual financial, correspondence and administrative offices. 

Outside are playing fields, houses, mountains and lakes, for it was thought that those who compute the weather 

should breathe of it freely." From: L.F. Richardson: Weather Prediction by Numerical Process (1922)





Henry Poincaré (1854-1912)

French mathematician, physicist and 

philosopher of science

▪ Fundamental contributions to pure and 

applied mathematics

▪ Studying the three-body problem, he 

became the first person to discover a 

chaotic deterministic system

▪ Laid foundations for modern chaos 

theory



“Why have meteorologists such difficulty in predicting the weather with any 

certainty? Why is it that showers and even storms seem to come by chance ... a 

tenth of a degree (C) more or less at any given point, and the cyclone will burst 

here and not there, and extend its ravages over districts that it would otherwise 

have spared. If (the meteorologists) had been aware of this tenth of a 

degree, they could have known (about the cyclone) beforehand, but the 

observations were neither sufficiently comprehensive nor sufficiently 

precise, and that is the reason why it all seems due to the intervention of 

chance” 

Poincaré, 1909



Sensitive dependence on initial conditions

If we knew exactly the laws of nature and the situation of the universe at the

initial moment, we could predict exactly the situation of the same universe at a

succeeding moment. But even if it were the case that the natural laws had no

longer any secret for us, we could still only know the initial situation

approximately. If that enabled us to predict the succeeding situation with the

same approximation, that is all we require, and we should say that the

phenomenon had been predicted, that it is governed by laws. But it is not always

so; it may happen that small differences in the initial conditions produce very

great ones in the final phenomena. A small error in the former will produce an

enormous error in the latter. Prediction becomes impossible, and we have the

fortuitous phenomenon.

Poincaré, 1903 “Science and Method”



Edward Lorenz (1917 –2008)
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“… one flap of a sea-gull’s 

wing may forever change 

the future course of the 

weather” (Lorenz, 1963)



The Lorenz (1963) attractor 

– a protoptype chaotic 

model



What is deterministic chaos?

A physical system that 

▪ follows deterministic rules (absence of 

randomness)

▪ but appears to behave randomly; it looks random

▪ is sensitive dependent on the initial conditions

▪ needs to be nonlinear, dissipative and at least 3-

dimensional

▪ growth of perturbations is flow dependent
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Brief glossary (after E. Lorenz)

Nonlinear system: A system in which alterations in an initial state need not produce proportional alterations 

in subsequent states

Dissipative system: A dynamical system in which the temporal evolution of any set of points of finite volume 

in phase space leads to a set of smaller volume

Attractor: In a dissipative system, a limit set that is not contained in any larger limit set, and from 

which no orbits (trajectories) emanate

Strange attractor: An attractor with a fractal structure (dimension of the set is not a whole number)

Sensitive Dependence: The property characterising an orbit (trajectory) if most other orbits that pass close to 

it at some point do not remain close to it as time advances

Chaos: The property that characterises a dynamical system in which most orbits (trajectories) exhibit 

sensitive dependence

Butterfly effect: The phenomenon that a small alteration in the state of a dynamical system will cause 

subsequent states to differ greatly from the states that would have followed without 

alteration; sensitive dependence



At this point I want to recount in considerable detail the

circumstances that led to my personal involvement with chaos. I

readily recall the main events, but my attempts to relate them to

earlier and later developments are bound to involve some

speculation. The setting was the Department of Meteorology at

the Massachusetts Institute of Technology, once familiarly known

as Boston Tech, but now almost invariably called M.I.T. I had

been doing postdoctoral work there since 1948, and my main

interest was the dynamics of atmospheric structures of global and

continental size.

As a student I had been taught that the dynamic equations

determine what takes place in the atmosphere. However, as my

thinking became more and more influenced by numerical weather

forecasting, it became evident to me that these equations do not

prohibit any atmospheric state, realistic or unrealistic, from being

an initial state in a solution. It must be, I felt, that the various

solutions of the equations all converge toward a special set of

states — the realistic ones. I had even made a few unsuccessful

attempts to find formulas for this set, and had already abandoned

the effort. In the light of today's knowledge it appears that I was

seeking the attractor, and was right in believing that it existed but

wrong in having supposed that it could be described by a few

formulas.

The opening scene took place in 1955, when Thomas Malone

resigned from our faculty in order to establish and head a new

weather research center at the Travelers Insurance Company in

Hartford, Connecticut. Tom had been directing a project in

statistical weather forecasting, a field that had gained a fair

number of adherents in the early days of computers.

Philosophically, statistical forecasting is more like synoptic than dynamic

forecasting, in that it is based on observations of what has happened in the

past, rather than on physical principles. It is like dynamic forecasting in that

it makes use of values of the weather elements at particular locations,

rather than identifiable synoptic structures. The type of statistical forecasting

that had received most attention was “linear” forecasting, where, for

example, tomorrow’s temperature at New York might be predicted to be a

constant a, plus another constant b times today’s temperature at Chicago,

plus another constant c times yesterday’s relative humidity at St. Louis, plus

other similar terms. There were long-established mathematical procedures

for estimating the optimum values of the constants a, b, c, etc., and, in fact,

about the only opportunity for the meteorologist to use any knowledge of the

atmosphere was in selecting the predictors—the weather elements to be

multiplied by the constants. The computational effort that goes into

establishing a formula increases rapidly with the number of predictors, and,

as with numerical weather prediction, the work proliferated only after

computers became reasonably accessible. The method was regarded by

many dynamic meteorologists, particularly those who were championing

numerical weather prediction, as a pedestrian approach that yielded no new

understanding of why the atmosphere behaved as it did.

I was appointed to fill the vacancy that Tom’s departure had created, and

with his job I also acquired his project. During the next year I examined

numerous statistically derived formulas, and finally convinced myself that

what the statistical method was actually doing was attempting to duplicate,

by numerical means, what the synoptic forecasters had been doing for

many years—displacing each structure at a speed somewhere between its

previous speed and its normal speed. One-day prognostic charts were

decidedly mediocre, although the method was and still is useful for deciding

what local weather conditions to predict, once a prognostic chart is

available.
From: E. Lorenz: The Essence of Chaos (1993)



Needless to say, many of the devotees of statistical forecasting

disagreed with my findings. Possibly they looked upon me as an

infiltrator from the numerical weather prediction camp. In

particular, some of them pointed to a recent paper by the eminent

mathematician Norbert Wiener, which appeared to show that

linear procedures could perform as well as any others, and so

necessarily as well as numerical weather prediction or synoptic

forecasting. I found this conclusion hard to accept, and convinced

myself, although not some of the others, that Wiener's

statements, which were certainly correct but were not written in

the most easily understandable language, were being

misinterpreted. At a meeting in Madison, Wisconsin, in 1956,

attended by a large share of the statistical forecasting community,

I proposed to test the hypothesis by selecting a system of

equations that was decidedly not of the linear type. I would use a

computer to generate an extended numerical solution, and then,

treating the solution as if it had been a collection of real weather

data, I would use standard procedures to determine a set of

optimum linear prediction formulas. If these formulas could really

match up to any other forecasting scheme, they would have to

perform perfectly, since one could easily “predict” the “data”

perfectly simply by running the computer program a second time.

My first task was to select a suitable system of equations. I

proceeded in the manner of a professional meteorologist and an

amateur mathematician. Although in principle a wide variety of

systems would have worked, I was hoping to realize some side

benefits by choosing a set of equations resembling the ones that

describe the behavior of the atmosphere. After some

experimentation I decided to work with a drastically simplified

form of the filtered equations of numerical weather forecasting,

which would reduce the number of variables from the many thousands

generally used to a mere handful.

One day Robert White, a postdoctoral scientist in our department who

later went on to become Chief of the United States Weather Bureau,

and still later headed the organizations that superseded it, suggested

that I acquire a small computer to use in my office. If you wonder why I

had not already done so, recall that this was more than twenty years

before personal computers first appeared on the market. In fact,

computers for personal use were almost unheard of, and the idea had

certainly not occurred to me. We spent several months considering

various competing models and finally settled upon a Royal-McBee

LGP-30, which was about the size of a large desk and made a

continual noise. It had an internal memory of 4096 32-bit words, of

which about a third had to be reserved for standard input and output

programs. It performed a multiplication in 17 milliseconds and printed a

full line of numbers in about 10 seconds. Even so, when programmed

in optimized machine language it was about a thousand times as fast

as a desk calculator—pocket calculators had not yet appeared—and

was ideal for solving small systems of equations.

It should not surprise us that in a day when computers were far from

ubiquitous, most scientists, myself included, had not learned to write

computer programs. I spent the next few months getting acquainted

with the computer. Upon returning to the simplified meteorological

equations, I settled on a form with fourteen variables. Later I cut the

number to thirteen and then to twelve by suppressing the variations of

one and then two of the variables.

From: E. Lorenz: The Essence of Chaos (1993)



The equations contained several constants that specified the

intensity and distribution of the external heating needed to drive

the miniature atmosphere. Thus, if one set of constants failed to

produce a useful solution, there were always others to try. My

early attempts to generate “data” invariably produced “weather”

that settled down to a steady state and was therefore useless for

my purposes. After many experiments, I at last found a solution

that unmistakably simulated the vacillation observed in the

dishpan. I eagerly turned to the procedure for determining the

best linear formula, only to realize that perfect linear prediction

was possible simply by predicting that each variable would

assume the value that it had assumed one vacillation cycle

earlier. It was then that I recognized that for my test I would need

a set of equations whose solutions were not periodic. What I did

not even suspect at the time was that any such set would have to

exhibit sensitive dependence.

By this time it was 1959. Although by now I had become a part of

the statistical forecasting community, I managed to retain my

status as a dynamicist, and I planned to attend a symposium in

numerical weather prediction to be held the following year in

Tokyo. Titles for the talks were due well in advance. I gambled on

finding a suitable system of equations and completing my test,

and submitted the title “The Statistical Prediction of Solutions of

Dynamic Equations.”

If I had been familiar then with Poincaré’s work in celestial

mechanics, it might have made sense for me to abandon the

twelve equations and turn to the four equations of Hill’s reduced

problem, which, besides already being known to possess some

nonperiodic solutions, were a good deal simpler. My guess,

though, is that such a switch would not have appealed to me; the mere 

knowledge that simple systems with nonperiodic solutions did exist might 

have given me additional encouragement to continue my own search, and 

in any case I still had my eye on the possible side benefits. These, I felt, 

demanded that I work with a dissipative system. As it was, I kept trying 

new combinations of constants, and finally encountered the long-sought 

nonperiodic behavior after making the external heating vary with longitude 

as well as latitude. This is of course what happens in the real atmosphere, 

which, instead of receiving most of its heat directly from the sun, gets it 

from the underlying oceans and continents after they have been heated by 

the sun. Continents and oceans differ considerably in their capacity to 

absorb solar energy, and in the manner in which they subsequently 

transfer it to the atmosphere. When I applied the standard procedure to the 

new “data” the resulting linear forecasts were far from perfect, and I felt 

that my suspicions had been confirmed.

The solutions proved to be interesting in their own right. The numerical 

procedure advanced the weather in six-hour increments, and I had 

programmed the computer to print the time, plus the values of the twelve, 

thirteen, or fourteen variables, once a day, or every fourth step. Simulating 

a day required about one minute. To squeeze the numbers onto a single 

line I rounded them off to three decimal places, and did not print the 

decimal points. After accumulating many pages of numbers, I wrote an 

alternative output program that made the computer print one or two 

symbols on each line, their distances from the margin indicating the values 

of one or two chosen variables, and I would often draw a continuous curve 

through successive symbols to produce a graph. It was interesting to 

watch the graph extend itself, and we would sometimes gather around the 

computer and place small bets on what would happen next, just as 

meteorologists often bet on the next day’s real weather. We soon learned

From: E. Lorenz: The Essence of Chaos (1993)



some of the telltale signs for peculiar behavior; in effect, we were

learning to be synoptic forecasters for the makebelieve atmosphere.

In Figure 43 we see a copy of fifteen months of the somewhat faded

original output, divided for display purposes into three fivemonth

segments. The chosen variable is an approximate measure of the

latitude of the strongest westerly winds; a high value indicates a low

latitude. There is a succession of “episodes,” in each of which the

value rises abruptly, remains rather high for a month or so, and then

drops equally abruptly, but the episodes are not identical and are not

even equal in length, and the behavior is patently nonperiodic.

At one point I decided to repeat some of the computations in order to

examine what was happening in greater detail. I stopped the

computer, typed in a line of numbers that it had printed out a while

earlier, and set it running again. I went down the hall for a cup of

coffee and returned after about an hour, during which time the

computer had simulated about two months of weather. The numbers

being printed were nothing like the old ones. I immediately suspected

a weak vacuum tube or some other computer trouble, which was not

uncommon, but before calling for service I decided to see just where

the mistake had occurred, knowing that this could speed up the

servicing process. Instead of a sudden break, I found that the new

values at first repeated the old ones, but soon afterward differed by

one and then several units in the last decimal place, and then began

to differ in the next to the last place and then in the place before that.

In fact, the differences more or less steadily doubled in size every

four days or so, until all resemblance with the original output

disappeared somewhere in the second month. This was enough to

tell me what had happened: the numbers that I had typed in were not

the exact original numbers, but were the rounded-off values that had

appeared in the original printout. The initial roundoff errors were the

culprits; they were steadily amplifying until they dominated the

solution. In today’s terminology, there was chaos.

It soon struck me that, if the real atmosphere behaved like the

simple model, long-range forecasting would be impossible. The

temperatures, winds, and other quantities that enter our estimate of

today’s weather are certainly not measured accurately to three

decimal places, and, even if they could be, the interpolations

between observing sites would not have similar accuracy. I became

rather excited, and lost little time in spreading the word to some of

my colleagues.

In due time I convinced myself that the amplification of small

differences was the cause of the lack of periodicity. Later, when I

presented my results at the Tokyo meeting, I added a brief

description of the unexpected response of the equations to the

round-off errors.

From: E. Lorenz: The Essence of Chaos (1993)



A fifteen-month section of the original print-

out of symbols representing two variables of

the twelve-variable model. A solid curve had

been drawn through the symbols for one

variable, while the symbols for the other are

faintly visible. The section has been broken

into three five-month segments, shown on

consecutive rows.

From: E. Lorenz: The Essence of Chaos (1993)



Predictability: Does a flap of a butterfly’s wings in Brazil set off a tornado in Texas?

- Talk by Ed Lorenz at a GARP session in Washington, D.C. on 29 December 1972 -

“Lest I appear frivolous in even posing the title question, let alone suggesting that it might 

have an affirmative answer, let me try to place it in proper perspective by offering two 

propositions.

1. If a single flap of a butterfly’s wings can be instrumental in generating a 

tornado, so also can all the previous and subsequent flaps of its wings, as 

can the flaps of the wings of millions of other butterflies, not to mention the 

activities of innumerable more powerful creatures, including our own 

species.

2. If the flap of a butterfly’s wings can be instrumental in generating a tornado, it 

can equally well be instrumental in preventing a tornado.”

From: E. Lorenz: The Essence of Chaos (1993)



Predictability: Does a flap of a butterfly’s wings in Brazil set off a tornado in Texas?

- Talk by Ed Lorenz at a GARP session in Washington, D.C. on 29 December 1972 -

Although we cannot claim to have proven that the atmosphere is unstable, the evidence that it is so is 

overwhelming. The most significant results are the following.

1. Small errors in the coarser structure of the weather pattern—those features which are readily resolved 

by conventional observing networks—tend to double in about three days. As the errors become larger 

the growth rate subsides. This limitation alone would allow us to extend the range of acceptable 

prediction by three days every time we cut the observation error in half, and would offer the hope of 

eventually making good forecasts several weeks in advance.

2. Small errors in the finer structure—e.g., the positions of individual clouds— tend to grow much more 

rapidly, doubling in hours or less. This limitation alone would not seriously reduce our hopes for 

extended-range forecasting, since ordinarily we do not forecast the finer structure at all.

3. Errors in the finer structure, having attained appreciable size, tend to induce errors in the coarser 

structure. This result, which is less firmly established than the previous ones, implies that after a day or so 

there will be appreciable errors in the coarser structure, which will thereafter grow just as if they had been 

present initially. Cutting the observation error in the finer structure in half—a formidable task—would 

extend the range of acceptable prediction of even the coarser structure only by hours or less. The 

hopes for predicting two weeks or more in advance are thus greatly diminished.

4. Certain special quantities such as weekly average temperatures and weekly total rainfall may be 

predictable at a range at which entire weather patterns are not.

From: E. Lorenz: The Essence of Chaos (1993)



Ed Lorenz (1963): Deterministic Nonperiodic Flow

Dynamical system that is highly 

sensitive to perturbations of the initial 

conditions 

(deterministic chaos)



October 29, 2014

In a nonlinear system the growth of initial uncertainty is flow dependent.

The set of initial conditions (black circle) is located in different regions of the attractor in 

a), b) and c) and leads to different error growth and predictability in each case.

predictable semi-predictable unpredictable



Lorenz (1963)

Courtesy Hannah Christensen



Chaos and ensemble forecasting

Good predictability

Poor predictability

forecast time

forecast time

The climate is a chaotic system where the future 

state of the system can be very sensitive to small 

differences in the current (initial) state of the 

system. 

In practice, the initial state of the system is always 

uncertain. 

Our forecast models are not perfect in all aspects 

(e.g. small-scale features such as clouds).

Ensemble forecasting takes into account these 

inherent uncertainties by running a large number of 

similar but not identical versions of the model in 

parallel. The resulting forecasts are expressed in 

probabilities.



Lothar: 08Z, 26 Dec. 1999

➢ 100 fatalities

➢ 400 million trees blown down

➢ 3.5 million electricity users 
affected for 20 days

➢ 3 million people without water

Storms Lothar +Martin





Ensemble Initial Conditions 24 December 1999



Lothar (T+42 hours) 





Probabilistic forecasting and the cost-loss concept

Charlie is planning to lay concrete tomorrow. Should he?

Let p denote the probability of frost. Charlie loses L if concrete freezes. But Charlie also has 

fixed (e.g. staff) costs. There may be a penalty for late completion of this job - by delaying 

completion of this job,  he will miss out on other jobs. These costs are C.

Is L • p > C ? 

If p > C/L don’t lay concrete!

frost free frosty

No No?

Consensus forecast: frost free

 Yes





Introduction to chaos for:

Seasonal climate prediction

Atmospheric predictability 

arises from slow variations 

in lower-boundary forcing



Climate forecasts are not crucially sensitive to the initial 

conditions. They are a mixed initial-boundary condition (forcing) 

problem in a chaotic system.



El Niño Southern Oscillation – a coupled atmosphere-ocean mode of variability



El Niño Southern Oscillation – a source of predictability on seasonal timescales



Observations
Forecast 

Products

current state 

of the

atmosphere

current state

of the 

ocean

Data 

Assimilation

ocean 

model

Coupled 

model

atmospheric 

model

coupler

Forecast models for seasonal predictions





Forecasting probability distributions

T T

Seasonal forecasts aim to predict an anomaly from the default climatological  probability.

Probability density distributions of a hypothetical 

climatology and forecast given an observation.

“Ideal” situation “Real” situation



Edward Lorenz (1917 – 2008 )
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What is the 

impact of f on 

the attractor?



The influence of f on the state vector probability function is itself predictable.

f=0 f=2

f=3 f=4

Add external steady forcing f to the Lorenz (1963) equations



Mechanical analogue of preferred atmospheric circulation states



Preferred atmospheric circulation states: role of the forcing


