OPEIMICUS

Europe’s eyes on Earth

Technical Report

C3S 425 Predictia - Web architecture to develop
demonstrators based on the CDS Toolbox

Issued by: Predictia Intelligent Data Solutions SL

Date: 21/01/2019
Ref: C3S_425 201901_Technical_Report_v1

This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather
Forecasts, operator of C3S on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All
information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any
particular purpose.

The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European
Commission and the European Centre for Medium-Range Weather Forecasts has no liability in respect of this document,
which is merely representing the authors view.

Contributors

Predictia Intelligent Data Solutions SL
Fernando Martin Marlasca fmartin@predictia.es
Daniel San Martin Segura daniel@predictia.es
Markel Garcia Diez garciam@predictia.es

Predictia 2/38

Table of contents

Introduction

Architecture overview
Application structure
Creating new demonstrators
Menu configuration

Filter configuration

Predictia

© o O »

14
33

3/38

Introduction

The scope of the tender “C3S 425: Migration of Sectoral Information System demonstrators
onto the operational infrastructure” is to reimplement five demonstrators previously
developed in the SIS by using the Climate Data Store and the associated Toolbox. During
this reimplementation a redesign of the user interfaces will be performed to obtain an
homogeneous graphical design and user experience.

The project started on December 2017 and is expected to end during the first semester of
2019.

The objective of this document is to describe the technical solution that has been built to
achieve the objectives of the project. To avoid implementing five completely independent
demonstrators, it was proposed to develop a common web architecture that could be
adapted to their common and particular functionalities. The resulting software architecture is
not a general framework, but can be used to ease the development of new demonstrators.

Predictia 4/38

Architecture overview

The proposed architecture is described in the figure below:

C3S 425 web
architecture /l\'::> workflows — CDS
data

CDS Toolbox API

CDS Toolbox

The CDS Toolbox is used to generate graphical products (charts, maps...) and to gather
data. This products and datasets are generated by a set of workflows that have to be defined
for each demonstrator. The web architecture retrieve this information from the CDS Toolbox
by making asynchronous HTTP requests. This document will focus on describing the web
architecture and not the required workflows to generate graphical products.

The demonstrators cope with a diversity of data sources: observations, climate projections
and seasonal forecasts for climate variables or sector-specific indices. Obviously, the nature
of these different data sources determine very different parameters in order to fetch a
concrete data result (a forecast or an observation). For instance, a specific scenario has to
be defined for climate projections and a runtime value is needed to determine a seasonal
forecast.

The selection procedure also includes the many different Essential Climate Variables (ECV)
and sector-specific climate indices that have been identified in the demonstrators as relevant
for end users. Therefore, each result is defined by an important number of parameters, and
these parameters change between different types of results. This way, user interfaces have
to provide an important number of selection elements (HTML form elements such as selects,
check boxes, sliders or radio buttons) to enable this data selection.

Evidently, there are strong interdependencies between these selection elements. Some of
these dependencies are hierarchical given by the nature of the different data sources (the
selection of an scenario is only available for climate projections). However, some
application-specific constraints produce non-hierarchical dependencies. For instance, in the
ECEM demonstrator, seasonal forecasting is only available at a country level but not at a
cluster level. This type of constraints force to use discovery services in order to know the
availability of results.

Predictia 5/38

These parameters are selected via a menu where all of these constraints and
inter-dependencies are defined.

Since demonstrators have been designed as Geographic Information System (GIS) clients,
maps constitute the primary data visualization support.

The proposed web architecture has been designed to ease the development of this kind of
GIS user interfaces: a complex menu which enables the selection of a dataset to be
displayed over a map/chart.

These are the main technical characteristics of the resulting architecture:

e A Single-Page Application (SPA) approach have been followed. SPA approach
avoids interruption of the user experience between successive pages, making the
application behave more like a desktop application. To achieve this objective, there is
an intensive usage of asynchronous requests that enables the partial update of a
web page.

This application has been developed using the framework Angular v.5.

The business logic of the application is based on a set configuration files to define:
the menu elements and its inter-dependencies, the CDS Toolbox workflows to be
executed, etc.

e |t has been designed to be as flexible as possible and to have the possibility of
defining new functionalities over it.

e New responsive user interface with an improved and homogeneous user experience.

It is important to note that the web architecture does not aim to automatically create new
demonstrators. Each demonstrator has its own characteristics and features, so they shall
have big differences in their implementation. This web architecture aims to ease the
development of new demonstrators since it solves many common requirements. It is
proposed to be the base project for the development of new demonstrators. Therefore, deep
knowledge of the Angular framework is required to make use of this web architecture.

The goal of this document is to explain how to create a new demonstrator in this application,
with its configuration files, always having in mind that each demonstrator will have the need

to develop and implement its own ad-hoc features.

This is a preliminary version of the documentation and will be extended over the next
months (including the base source code and the implementation of several demonstrators).

Predictia 6/38

Gpernicus

SWICCA

0.5 degree grid (50km)

Moderate (RCP 4.5)

Absolute values (reference period)

Weain tivar basins
[Lakes
Rivers

Sub-basins

Hide conrols

Ensemble mean

Screenshot of the new user interface

Predictia 7/38

Application structure

The following diagram shows the file and folder structure containing the configuration files to
define a set of demonstrators. This structure follows the guidelines of Angular.

' > sis-demonstrators [sis
P = bower_components
% e2e
k= node modules
¥ 73 > 5TC
¥ &% > app
¥ 7% > components
b breadcrumb
P = catchmentslider
P = clim4energy
B3 clim4energy-map
b= >demonstrator
k(= = ecem
k% > ecem-map
by edge
k4 edge-map
k= legend
k% > map
b (% > menu
k% modal
Py = swicca
k% swicca-map
ki >time
B wisc
k% wisc-coordinates
P wisc-map

Predictia

¥ % modules

P (= app-routing
b clim4energy
k% ecem

ki edge

k= shared

P (5 swicca

B (5 wisc

k&% = objects
¥ % > Services
7§ load-maps-data.service.spec.ts

7§ load-maps-data.service.ts

75 load-menu-json.service.spec.ts

T§ > load-menu-json.service.ts
Tg modal.service.spec.ts

T5 modal.service.ts

TS time.service.spec.ts

T§ = time.service.ts

T§ toolbox-calls.service.spec.ts

15 > toolbox-calls.service.ts
<3 app.component.html
¢ app-component.scss
T% app.component.spec.ts
TS app.component.ts
T5 app.module.ts
TS json-to-for.pipe.spec.ts
TS json-to-for.pipe.ts

¥ p > assels
¥ (3 > config

¥ &5y > filcers
[} ecem_filters.json
[} swicca_filters.json
¥ % > maps
[clim4energy_map.json
[y ecem_map.json
[} edge_map.json
[} >swicca_map.json
[} wisc_map.json
¥ [> Menus
[, clim4energy_menu.json
{4 ecem_menu.json
[} edge_menu.json
{4 >swicca_menu.json
{&wisc_menu.json
¥ 3 > workflows
[} ecem_wf.json
{5 swicca_wf.json
[3 wisc_wf.json
{ } config.json
[} slider_years.json

8/38

Creating new demonstrators

For the creation of a new demonstrator, the following tasks must be carried out:
e Create a new Angular component for the demonstrator.
app > component > demonstrator > demonstrator-demonstrator.component

For the HTML of this component, another demonstrator can be taken as an example,
because some HTML elements must be placed in order to have a good visualization
and behavior of the demonstrator.

The javascript of the component is explained in the demonstrator-filters.json

explanation.

e Create a new map component for this demonstrator that has to be instantiated in
the previous component HTML.

app > component > demonstrator-map > demonstrator.map.component

The HTML is just a div to instantiate there the |leaflet map (leaflet library is used to
generate and manage maps).

In the JavaScript code, functions can be added in order to add new layers, new
styles for the layers... The functionality to add the base layer and to add the defined
controls to the map is developed in the map.component.

e Create two new modules in the folder modules > demonstrator
o demonstrator-routing.module > with a reference to the created
demonstrator-demonstrator.component.
o demonstratormodule > it loads the necessary modules, services and
components.

e Create a new configuration file that will define the menu elements of the new
demonstrator and add the reference to this json file in load-menu-json.service.ts.

assets > config > menus > demonstrator_menu.json

The explanation of how to create this JSON file can be found in Menu configuration

e Create a new configuration file in order to choose the workflow of the toolbox that
will be executed (by sending parameters to it) to show the data selected in the menu
in the demonstrator map, and add the reference to this JSON file in
load-menu-json.service.ts.

assets > config > filters > demonstrator filters.json

Predictia 9/38

https://leafletjs.com/

The explanation of how to create this json file is in Filter configuration

e Create a new configuration file in order to define the data necessary to call the
workflow, identifier, function name. WORK IN PROGRESS

assets > config > workflows > demonstrator_wf.json

e Create a new configuration file in order to define some parameters used in the map
of the new demonstrator.

assets > config > maps > demonstrator_map.json

In this file the following parameters can be configured (which belong to the element
‘map’):

latitude: to define the center of the map

longitude: to define the center of the map

zoom: default zoom at the load

minZoomControl: minimum zoom to be controlled by the zoom control
maxZoomControl: maximum zoom to be controlled by the zoom control
type: of the map, ‘vector’ or ‘raw’

baselLayer: URL of the baselayer that we want to use

attribution: of the baselayer

token: access token if needed to use the map

In the same file, in the element “mapControls”, we can configure the controls that we
want to display in the map.
o breadcrumb
opacity
legend
time-slider
coordinates

O O O O

Example:

Predictia 10/38

"map": {
type” - "wvector®;
"zoom": 4,
"latitude®: 52.731253,
"longitude": 20.996139,
"minZoomControl™: 4,
"maxZoomControl": 17,
"name": "openstreetmap de"”,
"baseLayer”: "https://{s}.tile.openstreetmap.de/tiles/osmde/{z}/{x}/{y}.png",
"attribution”: "© 0penStreetMap</a=
"token":
}!
"mapControls": {
"breadcrumb": true,
"opacity": true,
"legend": true,
"timeslider": true,
"coordinates”: false
}

e If in the demonstrator there is going to be a time-slider control, the time values must
be configured in the slider_years.json file, in this way:

A new node with the name of the demonstrator has to be added to the file. Inside of
it, menu options must be added by adding subtrees, until having the combination of
options where we want to add the control and its time values. Examples:

1. If we want the time control in a demonstrator for all the combinations with the
“projections” option selected:
"projections”: {

"yvalues":
{
"min": "2025-81-81",
"max": "20868-12-31
}

H
2. If we do not want the time control with the “historical” option selected:

‘“historical®: {
},

3. If we want the control with a combination of options (projections, climate,
climate_model_climate), one of its values with a time option, and the others
with others:

Predictia 11/38

"projections”: {
"climate”: {
"climate model climate": {

"reml®: {
"values": |
§
"min": "1979-81-81",
"max": "2p98-12-31"
}
]
: -
"others": {
"walues": |
{
"min": "1973-81-81",
"max": "2188-12-31"
1
]
}

}l

There are different ways to show the time values in the time-slider:
1. From an initial date to an end date:

Jan 1979 . Dec 2100

Jan 1979
] « 'h - P

"values": |

{
"min": "2015-01-681",
"max": "2865-12-31

]

2. Number of steps by month (for seasonal options):

"walues": |
{
"ynit": "month",
"step": 1,
"max": 6
}

]

3. Exact steps:

Predictia 12/38

Predictia

2016->2045

"yvalues": |
{
"min":
"max":
j
{
"min":
"max":
}F
{
"min":
"max":
}r
{
"min":
"max":
}

I &

'1281-81-81",

"2018-81-81"

'28681-81-81",

"2838-81-81"

*2616-81-81",

"2045-81-81"

"2836-01-81",

"2865-81-81"

i

)

]

2036->2085

13/38

Menu configuration

In order to configure a menu for a demonstrator, a JSON file must be written, with an
element for each item of the menu. If multiple demonstrators will be created for a single
application, there will be a JSON file for each demonstrator.

Schema of the JSON file

{
"Sschema" :"http://json-schema.org/draft-07/schema#",

"Sid":"http://example.com/root.json",
"type":"array",
"title":"Demonstrator Menu Configuration",
"description”:"The menu configuration for one demonstrator"”,
"items" :{
"Sid":"#/items",
"type":"object",
"required":[
"id",
"label",
"description”,
"type”,
"value",
"options",
"breadcrumb”
1,
"properties" :{
"id" A
"description”:"Unique identifier",
"type":"string",
"examples":[
"spatial_aggregation”

]

H
"label" :{
"description":"Text to show, reference to the i18n file",
"type":"string",
"examples":[
"selector.spatial_aggregation.label"
]
H

"description":{
"description":"Text of the tooltip, ref. to the i18n file",
"type":"string",
"examples":[
"selector.spatial_aggregation.description”
]
H
"type" :{
"description":"Type of element generated",
"type":"string",
"examples":[
"radio",
"select",
"checkbox",
"input",
"date",

Predictia 14/38

"draw"

H
"value" :{
"description”:"Value of the default selected option",
"type":"string",
"examples":[
"countries”
]
H

"options":{
"description”:"array of values of the element",
"type":"array",
"items" :{
"type":"object",
"required":[
"value",
"text",
"description”
1.
"properties" :{
"value" :{
"description":"value of the option",
"type":"string",
"examples":[
"countries”
]
H
"text":{
"description":"text of the option, ref. to the i18n file",
"type":"string",
"examples":[
"selector.spatial_aggregation.countries.label"

H

"description":{
"description”:"tooltip of the option,ref. to the i18n file",
"type":"string",
"examples":[

"selector.spatial_aggregation.countries.description”

]
H
"enabled" :{

"description”:"array of conditions to enable this option. If this
parameter is not filled, the option will be always enabled. All the conditions must be true to
enable it.",

"type":"array",
"items" :{
"type":"object",
"required":[
"selector”,
"value"
1,
"properties"” :{

"selector" :{
"description":"Id of an element of the current menu "
"type":"string",
"examples":[

"spatial_aggregation”

]
¥

"value" :{

Predictia 15/38

"description”:"Array of possible values of that element that has
to be selected to consider “true” this condition"”,
"type":"array",
"items" :{
"type":"string",
"examples":[
"countries”

]

H
"visible" :{

"description”:"array of conditions to set visible this option. If this
parameter is not filled, the option will be always visible. All the conditions must be true to
set visible it.",

"type":"array",
"items" :{
"type":"object",
"required":[
"selector",
"value"
1.
"properties" :{
"selector":{
"description":"Id of an element of the current menu ",
"type":"string",
"examples":[
"spatial_aggregation”
]
H
"value":{
"description":"Array of possible values of that element that has
to be selected to consider “true” this condition"”,
"type":"array",
"items" :{
"type":"string",
"examples":[
"countries”

]

e
"visible" :{

"description”:"Array of conditions to set visible this item. If this parameter is
not filled, the item will be always visible. All the conditions must be true to set visible
it.",

"type":"array",
"items" :{
"type":"object",
"required":[
"selector",
"value"
1,
"properties":{
"selector":{

Predictia 16/38

"description":"Id of an element of the current menu "
"type":"string",
"examples":[

"spatial_aggregation”

]

’

H
"value" :{
"description":"Array of possible values of that element that has to be
selected to consider “true” this condition",
"type":"array",
"items" :{
"type":"string",
"examples":[
"countries”

]

}
H
"breadcrumb" :{
"description":"If there is a “breadcrumb control” on the map, this parameter sets
if this menu option is shown on the control or not.",
"type":"boolean",
"default":false,
"examples":[

false,
true
]
H
"minChecked" : {
"description”:"(only if type == checkbox) in a group of checkboxes, it sets the

minimum number of checkboxes that must be checked. If the user has checked that number of
checkboxes, they are disabled, so the user cannot uncheck anymore, but he can select the
unchecked ones.",

"type":"integer",

"examples":[

2,
3
]
e
"classCheck" : {
"description”:"(only if type == checkbox) possible values: check / switch. To

decide the kind of checkbox to draw",
"type":"string",
"examples":[
"check",
"switch"

Predictia 17/38

Examples of different types of menu items (selected by “type”
parameter):

Type radio

It creates a HTML radio group.

Example 1: 2 menu elements of type “radio”:

{
"id": "spatial_aggregation",
"label": "selector.spatial_aggregation.label",
"description": "selector.spatial_aggregation.description”,
"type": "radio",
"value": "countries",
"options": [
{
"value": "countries",
"text": "selector.spatial_aggregation.countries.label”,
"description”: "selector.spatial_aggregation.countries.description”
H
{
"value": "clusters",
"text": "selector.spatial_aggregation.clusters.label”,
"description”: "selector.spatial_aggregation.clusters.description”
}
1
"breadcrumb": false
H
{

"id": "model_type",
"label": "selector.model_type.label",

"description": "selector.model_type.description”,
"type": "radio",
"value": "historical",
"options": [
{
"value": "historical",
"text": "selector.model_type.historical.label",
"description”: "selector.model_type.historical.description”
H
{
"value": "seasonal",
"text": "selector.model_type.seasonal.label",
"description”: "selector.model_type.seasonal.description”,
"enabled": [
{
"selector": "spatial_aggregation",
"value": [
"countries”
]
}
]
H
{
"value": "projections",

Predictia 18/38

"text": "selector.model_type.projections.label",
"description”: "selector.model_type.projections.description”
}
1,

"breadcrumb": true

Countries

Projections

Clusters

Historical

In the second capture, “Seasonal Forecasting” is disabled because “Countries” is not
selected.

YOUR SELECTION: /| Historical | Climate / Air Temperature / Absolute values

In the breadcrumb-control the value of the first group is not shown, but it is show the value of
the second one; it is because the “breadcrumb” parameter.

Example 2: 1 menu element of type “radio” only visible with some options

{
"id": "level",
"label": "selector.level.label",
"description”: "selector.level.description”,
"type": "radio",
"value": "ten",
"visible": [
{
"selector": "category",
"value": [
"climate"
]
H
{
"selector": "climate_variable",

Predictia 19/38

"value": [

"wind_speed"
]
}
1,
"options": [
{
"value": "ten",
"text": "selector.level.ten.label",
"description”: "selector.level.ten.description”
H
{
"value": "one_hundred",
"text": "selector.level.one_hundred.label",
"description”: "selector.level.one_hundred.description”
}

1,

"breadcrumb”: true

Climate

In this capture “level menu item” is not visible because the option “wind_speed” is not
selected.

Predictia 20/38

Climate

In this capture “level menu item” is visible because the option “wind_speed” is selected.

Type select
It creates a dropdown of options using ngx-select-ex.

Example 1: Menu element of type “select”

{
"id": "energy_variable",
"label": "selector.energy_variable.label",
"description": "selector.energy_variable.description”,
"type": "select",
"value": "demand",
"visible": [
{
"selector": "category",
"value": [
"energy"
]
}
1,
"options": [
{
"value": "demand",
"text": "selector.energy_variable.demand.label",
"description”: "selector.energy_variable.demand.description”
H
{
"value": "hydro_reservoir",
"text": "selector.energy_variable.hydro_reservoir.label",
"description”: "selector.energy_variable.hydro_reservoir.description”
H
{

Predictia 21/38

https://github.com/optimistex/ngx-select-ex

"value": "hydro_run_of_river",

"text": "selector.energy_variable.hydro_run_of_river.label",
"description”: "selector.energy_variable.hydro_run_of_river.description
H
{
"value": "wind",
"text": "selector.energy_variable.wind.label",
"description”: "selector.energy_variable.wind.description”
H
{
"value": "solar",
"text": "selector.energy_variable.solar.label",
"description”: "selector.energy_variable.solar.description”
}

1,

"breadcrumb": true

st
Demand

Select menu item collapsed

Demand

Hydro (reservoir)
Hydro (run-of-river)
wind

Solar (PV only)

Select menu item expanded

Example 2: Menu element of type select with an option not always visible.
{

"id": "climate_model_energy",
"label": "selector.climate_model.label",
"description": "selector.climate_model.description”,
"type": "select",
"value": "rcm1",
"visible": [
{
"selector": "model_type",
"value": [
"projections”
]
H
{
"selector": "category",
"value": [
"energy"

Predictia 22/38

1,

"options": [

{
"value": "ensemble_mean",
"text": "selector.climate_model.ensemble_mean.label",
"description”: "selector.climate_model.ensemble_mean.description”,
"visible": [
{
"selector": "energy_variable",
"value": [
"demand",
"wind",
"solar"
]
}
1,
"enabled": [
{
"selector": "temporal_resolution",
"value": [
"yearly"
]
}
]
H

Enargy

Marmalised Anomalies

Ensemble Mean

MUTHLAS AT
RCM2 [RAIC:RACMOJEC. ..
RCM3 [ARCMARPEGE/C...

The “demand” is selected, so the “ensemble mean” option is visible

Predictia 23/38

RCM1 (RCMO:RCA4Ha.,
RCMI (RAICRACMOYEC. ..
BCME [ARCH:ARPECESC.,
RCM4 (WRIPWRF/IPSL])
RCMS (REMP:REMOYMPL)
RCME [HIIC:HIRHAMEL. .
RCMT (RCIC:RCALEC-E...

” [T]

“‘Demand”, “wind”, “solar” are not selected, so the “ensemble mean” option is not visible

Type checkbox

It creates a group of HTML checkboxes. There are 2 types of checkboxes: “check” and
“switch”; the type is set with the parameter “classCheck”.

Example 1: Menu element of type “checkbox”, classCheck = “check”
{

"id": "gem",
"label": "edge.selector.gcm.label",
"description”: "edge.selector.gcm.description”,

"type": "checkbox",
"minchecked": 2,
"classCheck" :"check",

"value": "noresm1",
"visible": [
{
"selector": "model_type",
"value": [
"projections”
]
}
1,
"options": [
{
"value": "noresml1"”,
"checked": true,
"text": "edge.selector.gcm.noresml.label”,
"description”: "edge.selector.noresml.description”
H

Predictia 24/38

v

v

v

Predictia

}
1,

"breadcrumb” :

MorESM1-mM

IPSL-CMS5A-LR

GFDL-ESM2M

"value": "miroc",

"checked": true,

"text": "edge.selector.gcm.miroc.label”,
"description”: "edge.selector.miroc.description”
"value": "ipsl",

"checked": true,

"text": "edge.selector.gcm.ipsl.label”,
"description”: "edge.selector.ipsl.description”
"value": "hadgem2",

"checked": true,
"text": "edge.selector.gcm.hadgem2.label”,
"description”: "edge.selector.hadgem2.description”

"value": "gfdl",

"checked": true,

"text": "edge.selector.gcm.gfdl.label",
"description”: "edge.selector.gfdl.description”

true

» MIROC-ESM-CHEM

»' HadGEM2-ES

25/38

All of the options are selected because of the parameters “checked” are set to ‘true’

» MNorEsMi1-mM
' IPSL-CM5A-LR

» GFDL-ESM2ZM

. MorEsmM1-m
. IPSL-CMS5A-LR

In the 3rd capture, the 2 checkboxes are disabled because the minchecked parameter.

Example 2: Menu element of type “checkbox”, classCheck = “switch”

"id": "hydromodels",

"label": "edge.selector.hydromodels.label",
"description”: "edge.selector.hydromodels.description”,
"type": "checkbox",

"minchecked": 1,

"classCheck" :"switch",

"value": "mhm",
"visible": [
{
"selector": "model_type",
"value": [
"projections”,
"seasonal”
]
}
1,
"options": [
{
"value": "mhm",
"checked": true,
"text": "edge.selector.hydromodels.mhm.label",
"description”: "edge.selector.hydromodels.mhm.description”,
"enabled": []
H
{
"value": "noahmp",

"checked": true,

Predictia 26/38

}

1,

"breadcrumb” :

"text": "edge.selector.hydromodels.noahmp.label",

"description”: "edge.selector.hydromodels.noahmp.description”,
"enabled": []

"value": "vic",

"checked": true,

"text": "edge.selector.hydromodels.vic.label",

"description”: "edge.selector.hydromodels.vic.description”,
"enabled": []

"value": "pcrglobwb",
"checked": true,
"text": "edge.selector.hydromodels.pcrglobwb.label",

"description”: "edge.selector.hydromodels.pcrglobwb.description”,
"enabled": []
true

Type input

It creates a HTML text input with a label.

The “label” text is set in the parameter options>text
The “placeholder” text is set in the parameter options>description

Example: Menu element of type “input”

{
"id": "keyword_search",
"label": "wisc.selector.keyword_search.label",
"description": "wisc.selector.keyword_search.description”,
"type": "input",
"value": ""
"visible": [
{
"selector”: "dataset",
"value": [
"storm_track",
"storm_footprint"
]
}
1.
"options": [
{
"value": "name",
Predictia

27/38

"text": "wisc.selector.keyword_search.name.label",
"description”: "wisc.selector.keyword_search.name.description”

}

1,

"breadcrumb": false

Type date

It creates a date menu item (range) using ngx-bootstrap Datepicker.

Example: Menu element of type “date”

{
"id": "temporal_search",
"label": "wisc.selector.temporal_search.label",
"description”: "wisc.selector.temporal_search.description”,
"type": "date",
"value": ""
"visible": [
{
"selector": "dataset",
"value": [
"storm_track",
"storm_footprint"
]
}
1,
"options": [],
"breadcrumb": false
}

Predictia 28/38

https://valor-software.com/ngx-bootstrap/#/datepicker

September October

Type draw

It creates a menu item used to draw areas on the map. The coordinates of the areas are
shown on a container. The areas can be deleted clicking on the X of the row. (This menu

type is so specific because it was created originally for WISC demonstrator).

Example: Menu element of type “draw”

{
"id": "geographical_search",
"label": "wisc.selector.geographical_search.label",
"description”: "wisc.selector.geographical_search.description”,
"type": "draw",
"value": "",
"visible": [
{
"selector”: "dataset",
"value": [

"storm_track",
"storm_footprint"

}
1.
"options": [
{
"value": "control",
"text":"wisc.selector.geographical_search.control.label",
"description”: "wisc.selector.geographical_search.control.description”
}
1
Predictia 29/38

"breadcrumb": false

M:52.5897 E:-20.2148 5:41.8368 W:-37.1777
M: 44,4024 E:-26.7188 5:37.7881 W:-40.6055

Translations of the menu items

To set the “translations” of the menu items, the library ngx-translate for Angular is used, so
another JSON file must be created (ex: i18n/en.json). This file will be used for all the
demonstrators of the application (in case of multiple demonstrators).

Each literal of the configuration file can be referenced in the translation file.

The translation is done with the pipe “translate”.

Predictia 30/38

https://github.com/ngx-translate/core

Example 1: radio group without title.

Countries

Menu configuration file:

{
"id": "spatial_aggregation”,
"label": "selector.spatial_aggregation.label",
"description": "selector.spatial_aggregation.description”,
"type": "radio",
"value": "countries",
"options": [
{
"value": "countries",
"text": "selector.spatial_aggregation.countries.label”,
"description”: "selector.spatial_aggregation.countries.description”
H
{
"value": "clusters",
"text": "selector.spatial_aggregation.clusters.label”,
"description”: "selector.spatial_aggregation.clusters.description”
}
1,
"breadcrumb": false
}

Translations file:

{
"selector": {
"spatial_aggregation": {
"label": "",
"description”: "",
"clusters": {
"label": "Clusters",
"description”: "96 e-Highway 2050 clusters"
H
"countries": {
"label": "Countries",
"description”: "33 European countries"
}
H
}

Predictia 31/38

Example 2: radio group with title.

Climate

Menu configuration file:

{
"id": "category",
"label": "selector.category.label",
"description": "selector.category.description”,
"type": "radio",
"value": "climate",
"options": [

1,

"breadcrumb": true

Translations file:

{
"selector": {
"category": {
"label": "Category",
"description”: "",
"climate": {
"label": "Climate",
"description”: ""
H
"energy": {
"label": "Energy",
"description”: ""
}
}
}

Initialize the menu

To get the menu initialized in the new demonstrator, a div element must be placed in the file
demonstrator-demonstrator.component.htmi:

<div *ngIf="menu else 1loading;" submenu-demons [menus]="menu" [menusToPaint]="[menul[B]]"
[firstTime]="true" [parameters]="parameters"></div>

Predictia 32/38

Filter configuration

In order to configure which workflow of the toolbox has to be executed, a JSON file must be
written. This file will be configured depending on how the workflows in the toolbox are
defined. There will be a JSON file for each demonstrator.

Schema of the JSON file
{

"definitions": {},
"Sschema": "http://json-schema.org/draft-07/schema#",
"Sid": "http://example.com/root.json",
"type": "object",
"title": "The Root Schema",
"required": [
"filterGroups",
"filters"
1,
"properties": {
"filterGroups": {
"S§id": "#/properties/filterGroups”,
"type": "object",
"title": "The Filtergroups Schema",
"required": [

"precipitation”
1,
"type": {
"properties": {
"filters": {
"Sid": "#/properties/filterGroups/properties/precipitation/properties/filters"”,

"type": "object",
"title": "The Filters Schema",
"required": []

}
+
"params": {
"Sid": "#/properties/filterGroups/properties/precipitation/properties/params",
"type": "array",
"title": "The Params Schema",
"items": {

"8id"
"#/properties/filterGroups/properties/precipitation/properties/params/items",
"type": "string",
"title": "The Items Schema",
"default": "",
"examples": [
"indicator_precipitation”,
"time_period",
"resolution”,
"emission_scenario",
"model_type"
1,
"pattern”: "A(.%)$"
}
}
}

Predictia 33/38

}

"filters": {

"Sid": "#/properties/filters",
"type": "array",

"title": "The Filters Schema",
"items": {

"Sid": "#/properties/filters/items",
"type": "object",
"title": "The Items Schema",
"required": [

"all",

“any”,

"optional",

"workflow"

1,

"properties": {
tall": A

"Sid": "#/properties/filters/items/properties/all”,

"type": "array",

"title": "The All Schema",

"items": {
"$id": "#/properties/filters/items/properties/all/items",
"type": "string",
"title": "The Items Schema",

"default": "",
"examples": [
"precipitation”

]'
"pattern”: "A(.%)$"

}
H
"any": {
"Sid": "#/properties/filters/items/properties/any",
"type": "array",
"title": "The Any Schema",
"items": {
"Sid": "#/properties/filters/items/properties/any/items",
"type": "array",
"title": "The Items Schema"
}
b

"optional”: {

h

"Sid": "#/properties/filters/items/properties/optional”,
"type": "array",

"title": "The Optional Schema",

"items": {

"Sid":"#/properties/filters/items/properties/optional/items",

"type": "string",

"title": "The Items Schema",

"default": "",

"examples": [
"ensemble_range"

1,

"pattern": "A(.%)$§"

}

"workflow": {

Predictia

"Sid": "#/properties/filters/items/properties/workflow",
"type": "string",

"title": "The Workflow Schema",

"default": "",

"examples": [

34/38

"swicca-precipitation-linechart"

uA(.*)su

Explanation

The following example shows how this functionality works, in order to give the developer the
information to create a new configuration file for a new demonstrator.

The JSON file has 2 elements:
o filters: each element of the array defines one workflow, and has the next 4 elements:
o all: array of elements, each one of them will fit with the identifier of a
subelement of the filterGroups element.
o any: array of array of elements, each one of them will fit with the identifier of a
subelement of the filterGroups element.
o optional: array of elements, each one of them will fit with the identifier of a
subelement of the filterGroups element.
o workflow: code of the workflow
e filterGroups: each element will have an identifier (the elements of filters), and as
value, 2 elements:
o filters: a tuple key-value that must fit with a selected option of the menu.
o params: an array of keys that must fit with a selected option of the menu.

When we talk about the options of the menu, we refer to an array generated when the menu
of a demonstrator is used. For example, for the ECEM demonstrator, a possible value for
this array is:

Countries

Historical

Climate

"spatial aggregation”, "countries", ob @ xM]
"model type", "historical", ob : xM]
"category", "climate", ob @ xM]

"climate variable", "air temperature", ob @ xM]
"temporal resolution”, "daily", ob : xM]
"statistics", "absolute values", ob : xM]
"country"., "none", ob : xM]

I
S

Predictia 35/38

The goal here is to determine, depending on these array values, which workflow will be
called and which parameters will be sent to it to generate / get the data from the Toolbox.
We will see it with an example, with the ECEM demonstrator:

For this demonstrator a workflow "ecem-historical-climate-linechart" has been defined. This
workflow will be called for the historical and climate selections in the menu, and will be sent
the rest of the selections as parameters. In order to do this, we have defined the following
filter element in the JSON file:

"filters":
{
"all®:
historical","climate
”an:"‘lll :
clusters",
countries
“Gptiunal“:
Level"”,

month filter",
season filter

r
"workflow": "ecem-historical-climate-linechart
1

When a user modifies the options of the menu, the logic will search which of these filter
elements fits with the options. It will loop through the ALL elements and search them in the
filterGroups elements, it will find, in our example, these:

"climate": {

"historical": { "filters": {
"filters®: { “category": "climate
"model type": "historical },
k; "params": |
"params”: | climate variable",
temporal resolution statistics
| |

In the first element (“historical”), if "model_type": "historical" exist in the menu options (it
exists in our example), the application will save temporarily the options that fits with the
“params” elements (“temporal_resolution”).
F4: (2) ["temporal resolution”,. “"daily”, ob : xM]

The same with the “climate” element, all of the elements must be found, if not, this is not our
workflow, and the logic will continue searching. So we can call these parameters
(temporal_resolution, climate_variable, statistics), the mandatory parameters to be sent to
the workflow.

If all of them have been found, we jump to the ANY element, and for each array, we search

”»

for its elements in filterGroups, in our example, we would find for “clusters”,”countries”:

Predictia 36/38

"countries": { "clusters": {

"filters": { "filters": {
"spatial_ aggregation": "countries" "spatial aggregation": "clusters
L L
"params": ["params": [
‘country '‘cluster
] 1
}! }F
But only the “filters” element of the “countries” node will be found in the options:
H0: (2) ["spatial aggregation", “countries”, o : xM]

And that is the goal of the any elements, only one must be found, and its “params” elements
will be saved temporarily, in this case:

FE: (2) ["country", "none", ob : xM]

If one of them of each array is found, this means that we have found the workflow.

Then, we jump to the OPTIONAL element, this means that none, one or more of these
elements can be sent, searching them directly in the options of the menu, in our example,
none of them is found. These kind of options are for the menu options that are only visible in
some cases, for example “month_filter” is shown when we select “monthly” in
“temporal_resolution” but not in “daily”.

Countries

Historical

Climate

1 month

(2) ["spatial aggregation", "countries", ab @ xM]
(2) ["model type", "historical", ab @ xM]

(2) ["category", "climate", ob ¢ xM]

(2) ["climate variable", "air temperature”, ob : xM]
(2) ["temporal resolution", "monthly", ob_ : xM]

(2) ["month filter®™, "january". ob : xM]

(2) ["statistics", "absolute values", ob_ @ xM]

(2) ["country”. “none". ob : xM]

So, we already have the workflow to be called with its needed parameters.

F4: (2) ["temporal resolution”, "daily", ob : =M]
k0: (2) ["spatial aggregation", “countries”, ob : xM]
B3: (2] ["climate variable", "air temperature", oh @ xM]
-5 [“statistics®, “"absolute values®, ob : xM]

kE: (2) ["country", "none", ob : xM]

Predictia 37/38

All this functionality is in the code of each demonstrator and must be copied. This is because
there could be demonstrators that have variations in their behaviours.

Predictia 38/38

